Skip to main content
Log in

Improved coercivity and considerable saturation magnetization of cobalt ferrite (CoFe2O4) nanoribbons synthesized by electrospinning

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cobalt ferrite (CoFe2O4) nanoribbons with high crystallinity and purity were synthesized by annealing the as-spun PVP/[Co(NO3)2+Fe(NO3)3] precursor nanoribbons at temperatures from 450 to 750 °C in air, and they were certified to have an improved coercivity (H c) and considerable saturation magnetization (M s). Although all the prepared CoFe2O4 nanoribbons presented an excellent ferromagnetism behavior at room temperature, their M s progressively increased with increasing annealing temperature but H c followed an opposite variation tendency. The maximum M s of about 80.3 emu g−1 of the nanoribbons annealed at 750 °C was basically equal to the bulk value, and the maximum H c of about 1802 Oe of the nanoribbons annealed at 450 °C, is larger than most of reported H c values of other one-dimensional CoFe2O4 nanostructures by far. It suggested that the magnetization reverse processes of the CoFe2O4 nanoribbons annealed at 450 and 550 °C were dominated by the coherent rotation model, while that of the CoFe2O4 nanoribbons annealed at 650 and 750 °C were dominated by the growth of a reverse magnetic domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maensiri S, Sangmanee M (2009) Nanostructures and magnetic properties of cobalt ferrite (CoFe2O4) fabricated by electrospinning. Appl Phys A 97:167–177

    Article  Google Scholar 

  2. Pirouzfar A, Seyyed Ebrahimi SA (2014) Optimization of sol–gel synthesis of CoFe2O4 nanowires using template assisted vacuum suction method. J Magn Magn Mater 370:1–5

    Article  Google Scholar 

  3. Mukherjee D, Devkota J, Ruiz A, Hordagoda M, Hyde R, Witanachchi S, Mukherjee P, Srikanth H, Phan MH (2014) Impacts of amorphous and crystalline cobalt ferrite layers on the giant magnetoimpedance response of a soft ferromagnetic amorphous ribbon. J Appl Phys 116:123912–123920

    Article  Google Scholar 

  4. Ballarini N, Cavani F, Passeri S, Pesaresi L, Lee AF, Wilson K (2009) Phenol methylation over nanoparticulate CoFe2O4 inverse spinel catalysts: the effect of morphology on catalytic performance. Appl Catal A 366:184–192

    Article  Google Scholar 

  5. Kim DH, Nikles DE, Johnson DT, Brazel CS (2008) Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. J Magn Magn Mater 320:2390–2396

    Article  Google Scholar 

  6. Fritsch D, Ederer C (2012) First-principles calculation of magnetoelastic coefficients and magnetostriction in the spinel ferrites CoFe2O4 and NiFe2O4. Phys Rev B 86:014406–014416

    Article  Google Scholar 

  7. Carlier D, Ansermet JP (2006) Electrochemical synthesis and magnetic properties of CoFe2O4 nanowire arrays. J Electrochem Soc 153:C277–C281

    Article  Google Scholar 

  8. Hua ZH, Chen RS, Li CL, Yang SG, Lu M, Gu BX, Du YW (2007) CoFe2O4 nanowire arrays prepared by template-electrodeposition method and further oxidization. J Alloy Compd 427:199–203

    Article  Google Scholar 

  9. Xu Y, Xue DS, Gao DQ, Fu JL, Fan XL, Guo DW, Gao B, Sui WB (2009) Ordered CoFe2O4 nanowire arrays with preferred crystal orientation and magnetic anisotropy. Electrochim Acta 54:5684–5687

    Article  Google Scholar 

  10. Chen J, Wang Y, Deng Y (2013) Highly ordered CoFe2O4 nanowires array prepared via a modified sol–gel templated approach and its optical and magnetic properties. J Alloy Compd 552:65–69

    Article  Google Scholar 

  11. Wang Z, Liu X, Lv M, Chai P, Liu Y, Meng J (2008) Preparation of ferrite MFe2O4 (M = Co, Ni) ribbons with nanoporous structure and their magnetic properties. J Phys Chem B 112:11292–11297

    Article  Google Scholar 

  12. Wang Z, Liu X, Lv M, Chai P, Liu Y, Meng J, Zhou X (2008) Preparation of one-dimensional CoFe2O4 nanostructures and their magnetic properties. J Phys Chem B 112:15171–15175

    Google Scholar 

  13. Ju YW, Park JH, Jung HR, Cho SJ, Lee WJ (2008) Fabrication and characterization of cobalt ferrite (CoFe2O4) nanofibers by electrospinning. Mater Sci Eng B 147:7–12

    Article  Google Scholar 

  14. Cheng Y, Zou B, Yang J, Wang C, Liu Y, Fan X, Zhu L, Wang Y, Ma H, Cao X (2011) Fabrication of CoFe2O4 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic properties. CrystEngComm 13:2268–2272

    Article  Google Scholar 

  15. Fu J, Zhang J, Peng Y, Zhao J, Tan G, Mellors NJ, Xie E, Han W (2012) Unique magnetic properties and magnetization reversal process of CoFe2O4 nanotubes fabricated by electrospinning. Nanoscale 4:3932–3936

    Article  Google Scholar 

  16. Lu RE, Chang KG, Fu B, Shen YJ, Xu MW, Yang S, Song XP, Liu M, Yang YD (2014) Magnetic properties of different CoFe2O4 nanostructures: nanofibers versus nanoparticles. J Mater Chem C 2:8578–8584

    Article  Google Scholar 

  17. Jia Z, Ren D, Zhu R (2012) Synthesis, characterization and magnetic properties of CoFe2O4 nanorods. Mater Lett 66:128–131

    Article  Google Scholar 

  18. Pervaiz E, Gul IH, Anwar H (2012) Hydrothermal synthesis and characterization of CoFe2O4 nanoparticles and nanorods. J Supercond Nov Magn 26:415–424

    Article  Google Scholar 

  19. Han R, Li W, Pan W, Zhu M, Zhou D, Li FS (2014) 1D magnetic materials of Fe3O4 and Fe with high performance of microwave absorption fabricated by electrospinning method. Sci Rep 4:7493–7498

    Article  Google Scholar 

  20. Henry Y, Ounadjel K, Piraux L, Dubois S, George JM, Duvail JL (2001) Magnetic anisotropy and domain patterns in electrodeposited cobalt nanowires. Eur Phys J B 20:35–54

    Article  Google Scholar 

  21. Holzwarth U, Gibson N (2011) The Scherrer equation versus the ‘Debye–Scherrer equation’. Nature Nonotechnol 6:534

    Article  Google Scholar 

  22. Li ZP, Fan YJ, Zhan JH (2010) In2O3 nanofibers and nanoribbons: preparation by electrospinning and their formaldehyde gas-sensing properties. Eur J Inorg Chem 21:3348–3353

    Article  Google Scholar 

  23. Fan HT, Zhang T, Xu XJ, Lv N (2011) Fabrication of N-type Fe2O3 and P-type LaFeO3 nanobelts by electrospinning of gas-sensing properties. Sensor Actuat B 153:83–88

    Article  Google Scholar 

  24. Su YR, Lu BA, Xie YZ, Ma ZW, Liu LX, Zhao HT, Zhang J, Duan HG, Zhang HL, Li J, Xiong YQ, Xie EQ (2011) Temperature effect on electrospinning of nanobelts: the case of hafnium oxide. Nanotechnology 22:285609–285614

    Article  Google Scholar 

  25. Lu BA, Guo XS, Bao Z, Li XD, Liu YX, Zhu CQ, Wang YQ, Xie EQ (2011) Direct preparation of carbon nanotubes and nanobelts from polymer. Nanoscale 3:2145–2149

    Article  Google Scholar 

  26. Lu BA, Zhu CQ, Zhang Z, Lan W, Xie EQ (2012) Preparation of highly porous TiO2 nanotubes and their catalytic applications. J Mater Chem 22:1375–1379

    Article  Google Scholar 

  27. Fu JC, Zhang JL, Zhao CH, Peng Y, Li XD, He YM, Zhang ZX, Pan XJ, Mellors NJ, Xie EQ (2013) Solvent effect on electrospinnning of nanotubes: the case of magnesium ferrite. J Alloy Compd 577:97–102

    Article  Google Scholar 

  28. Garg K, Bowlin GL (2011) Electrospinning jets and nanofibrous structures. Biomicrofluidics 5:13403–13421

    Article  Google Scholar 

  29. Tsapis N, Dufresene ER, Sinha SS, Riera CS, Hutchinson JW, Mahadevan L, Weitz DA (2005) Onset of buckling in drying droplets of colloidal suspensions. Phy Rev Lett 94:018302–018305

    Article  Google Scholar 

  30. Ntallis N, Efthimiadis KG (2015) Size dependence of the magnetization reversal in a ferromagnetic particle. Comput Mater Sci 99:373–380

    Article  Google Scholar 

  31. Skomski R, Zeng H, Zheng M, Sellmyer DJ (2000) Magnetic localization in transition-metal nanowires. Phys Rev B 62:3900–3904

    Article  Google Scholar 

  32. Li D, Li SJ, Zhou YT, Bai Y, Zhu YL, Ren WJ, Long G, Zeng H, Zhang ZD (2015) Magnetization reversal and coercivity of Fe3Se4 nanowire arrays. J Appl Phys 117:1770–17705

    Google Scholar 

  33. Skomski R (2003) Nanomagnetics. J Phys 15:R841–R896

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Fund of China (51171075, 51371092) and the National Basic Program of China (2012CB933101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, P., Du, J., Jin, C. et al. Improved coercivity and considerable saturation magnetization of cobalt ferrite (CoFe2O4) nanoribbons synthesized by electrospinning. J Mater Sci 51, 885–892 (2016). https://doi.org/10.1007/s10853-015-9416-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9416-z

Keywords

Navigation