Skip to main content

Advertisement

Log in

One-pot hydrothermal route to synthesize the ZnIn2S4/g-C3N4 composites with enhanced photocatalytic activity

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Heterogeneous ZnIn2S4/g-C3N4 hybrid composites, as highly efficient visible-light-driven photocatalysts, were designed and fabricated by a simple one-step hydrothermal route for the first time, wherein the cubic ZnIn2S4 nanoparticles were in situ immobilized on the surface of porous g-C3N4 nanosheets (NSs). The resultant composites exhibit efficient photocatalytic activities, excellent photo-stability, and versatile photocatalytic abilities towards organic dye degradation, Cr(VI) reduction, and water splitting for H2 evolution. The significant enhancement of photocatalytic activity is attributed to the effective separation of photo-generated charge carrier pairs based on the construction of close heterogeneous interface and well-matched band structure, which can obviously lengthen the life span of holes and electrons pairs. Besides, the effective charge transfer from cubic ZnIn2S4 to ultrathin g-C3N4 NSs was confirmed by photoluminescence spectra, transient photocurrent–time (It) curves and electrochemical impedance spectroscopy Nyquist plots. This research provides a new sight in designing the highly efficient visible light responsive photocatalysts for environmental remediation and energy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mohaghegh N, Kamrani S, Tasviri M et al (2015) Nanoporous Ag2O photocatalysts based on copper terephthalate metal–organic frameworks. J Mater Sci 50:4536–4546. doi:10.1007/s10853-015-9003-3

    Article  Google Scholar 

  2. Mohaghegh N, Tasviri M, Rahimi E, Gholami MR (2015) Comparative studies on Ag3PO4/BiPO4-metal-organic framework–graphene-based nanocomposites for photocatalysis application. Appl Surf Sci 351:216–224

    Article  Google Scholar 

  3. Mohaghegh N, Tasviri M, Rahimi E, Gholami MR (2015) Nano sized ZnO composites: preparation, characterization and application as photocatalysts for degradation of AB92 azo dye. Mat Sci Semicond Process 21(2014):167–179

    Google Scholar 

  4. Mohaghegh N, Tasviri M, Rahimi E, Gholami MR (2015) A novel p-n junction Ag3PO4/BiPO4-based stabilized Pickering emulsion for highly efficient photocatalysis. RSC Adv 5:12944–12955

    Article  Google Scholar 

  5. Mohaghegh N, Tasviri M, Rahimi E, Gholami MR (2015) Electrodeposited multi-walled carbon nanotubes on Ag-loaded TiO2 nanotubes/Ti plates as a new photocatalyst for dye degradation. RSC Adv 5:44840–44846

    Article  Google Scholar 

  6. Rahimi E, Mohaghegh N (2015) Removal of toxic metal ions from Sungun acid rock drainage using mordenite zeolite, graphene nanosheets, and a novel Metal-organic framework. Mine Water Environ. doi:10.1007/s10230-015-0327-7

    Google Scholar 

  7. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–39

    Article  Google Scholar 

  8. Chen X, Burda C (2008) The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J Am Chem Soc 130:5018–5019

    Article  Google Scholar 

  9. Wang J, Tafen DN, Lewis JP et al (2009) Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J Am Chem Soc 131:12290–12297

    Article  Google Scholar 

  10. Shang L, Zhou C, Bian T et al (2013) Facile synthesis of hierarchical ZnIn2S4 submicrospheres composed of ultrathin mesoporous nanosheets as a highly efficient visible-light-driven photocatalyst for H2 production. J Mater Chem A 1:4552–4558

    Article  Google Scholar 

  11. Shen J, Zai J, Yuan Y, Qian X (2012) 3D hierarchical ZnIn2S4: the preparation and photocatalytic properties on water splitting. Int J Hydrogen Energy 37:16986–16993

    Article  Google Scholar 

  12. Shi L, Yin P, Dai Y (2013) Synthesis and photocatalytic performance of ZnIn2S4 nanotubes and nanowires. Langmuir 29:12818–12822

    Article  Google Scholar 

  13. Chen Y, Hu S, Liu W et al (2011) Controlled syntheses of cubic and hexagonal ZnIn2S4 nanostructures with different visible-light photocatalytic performance. Dalton Trans 40:2607–2613

    Article  Google Scholar 

  14. Peng S, Li L, Wu Y et al (2013) Size- and shape-controlled synthesis of ZnIn2S4 nanocrystals with high photocatalytic performance. CrystEngComm 15:1922–1930

    Article  Google Scholar 

  15. Yuan L, Yang MQ, Xu YJ (2014) A low-temperature and one-step method for fabricating ZnIn2S4-GR nanocomposites with enhanced visible light photoactivity. J Mater Chem A 2:14401–14412

    Article  Google Scholar 

  16. Ye L, Li Z (2014) ZnIn2S4: A photocatalyst for the selective aerobic oxidation of amines to imines under visible light. ChemCatChem 6:2540–2543

    Article  Google Scholar 

  17. Chen J, Xin F, Yin X et al (2015) Synthesis of hexagonal and cubic ZnIn2S4 nanosheets for the photocatalytic reduction of CO2 with methanol. RSC Adv 5:3833–3839

    Article  Google Scholar 

  18. Chen Y, Huang R, Chen D et al (2012) Exploring the different photocatalytic performance for dye degradations over hexagonal ZnIn2S4 microspheres and cubic ZnIn2S4 nanoparticles. ACS Appl Mater Interfaces 4:2273–2279

    Article  Google Scholar 

  19. Li L, Peng S, Wang N et al (2015) A general strategy toward carbon cloth-based hierarchical films constructed by porous nanosheets for superior photocatalytic activity. Small 11:2429–2436

    Article  Google Scholar 

  20. Xing C, Wu Z, Jiang D, Chen M (2014) Hydrothermal synthesis of In2S3/g-C3N4 heterojunctions with enhanced photocatalytic activity. J Colloid Interface Sci 433:9–15

    Article  Google Scholar 

  21. Zhang Z, Huang J, Yuan Q, Dong B (2014) Intercalated graphitic carbon nitride: a fascinating two-dimensional nanomaterial for an ultra-sensitive humidity nanosensor. Nanoscale 6:9250–9256

    Article  Google Scholar 

  22. Tian J, Liu Q, Asiri AM et al (2013) Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale 5:11604–11609

    Article  Google Scholar 

  23. Chen L, Huang D, Ren S et al (2013) Preparation of graphite-like carbon nitride nanoflake film with strong fluorescent and electrochemiluminescent activity. Nanoscale 5:225–230

    Article  Google Scholar 

  24. Fang ZL, Rong HF, Ya ZL, Qi P (2015) In-situ synthesis of CdS/g-C3N4 hybrid nanocomposites with enhanced visible photocatalytic activity. J Mater Sci 50:3057–3064. doi:10.1007/s10853-015-8865-8

    Google Scholar 

  25. Lei J, Chen Y, Wang L et al (2015) Highly condensed g-C3N4-modified TiO2 catalysts with enhanced photodegradation performance toward acid orange 7. J Mater Sci 50:3467–3476. doi:10.1007/s10853-015-8906-3

    Google Scholar 

  26. Lin Q, Li L, Liang S et al (2015) Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities. Appl Catal B 163:135–142

    Article  Google Scholar 

  27. Xu J, Zhang L, Shi R, Zhu Y (2013) Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J Mater Chem A 1:14766–14772

    Article  Google Scholar 

  28. Dong F, Zhao Z, Xiong T et al (2013) In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl Mater Interfaces 5:11392–11401

    Article  Google Scholar 

  29. Huang ZF, Song J, Pan L et al (2015) Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy 12:646–656

    Article  Google Scholar 

  30. Xu J, Long KZ, Wang Y et al (2015) Fast and facile preparation of metal-doped g-C3N4 composites for catalytic synthesis of dimethyl carbonate. Appl Catal A 496:1–8

    Article  Google Scholar 

  31. Ong WJ, Tan LL, Chai SP, Yong ST (2015) Heterojunction engineering of graphite carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane. Dalton Trans 44:1249–1257

    Article  Google Scholar 

  32. Shiraishi Y, Kofuji Y, Kanazawa S et al (2014) Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient co-catalysts for photocatalytic hydrogen evolution under visible light. Chem Commun 50:15255–15258

    Article  Google Scholar 

  33. Yin R, Luo Q, Wang D et al (2014) SnO2/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity. J Mater Sci 49:6067–6073. doi:10.1007/s10853-014-8330-0

    Article  Google Scholar 

  34. Shi L, Liang L, Wang F et al (2015) Enhanced visible-light photocatalytic activity and stability over g-C3N4/Ag2CO3 composites. J Mater Sci 50:1718–1727. doi:10.1007/s10853-014-8733-y

    Article  Google Scholar 

  35. Sun L, Qi Y, Jia CJ et al (2014) Enhanced visible-light photocatalytic activity of g-C3N4/Zn2GeO4 heterojunctions with effective interfaces based on band match. Nanoscale 6:2649–2659

    Article  Google Scholar 

  36. She X, Xu H, Xu Y et al (2014) Exfoliated graphene-like carbon nitride in organic solvents: enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu2+. J Mater Chem A 2:2563–2570

    Article  Google Scholar 

  37. Yang S, Gong Y, Zhang J et al (2013) Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv Mater 25:2452–2456

    Article  Google Scholar 

  38. Niu P, Zhang L, Liu G, Cheng HM (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22:4763–4770

    Article  Google Scholar 

  39. Chen W, Chen Z, Liu T et al (2014) Fabrication of highly visible light sensitive graphite-like C3N4 hybridized with Zn0.28Cd0.72S heterojunctions photocatalyst for degradation of organic pollutants. J Environ Chem Eng 2:1889–1897

    Article  Google Scholar 

  40. Zhang H, Guo LH, Zhao L et al (2015) Switching oxygen reduction pathway by exfoliating graphitic carbon nitride for enhanced photocatalytic phenol degradation. J Phys Chem Lett 6:958–963

    Article  Google Scholar 

  41. Zheng D, Huang C, Wang X (2015) Post-annealing reinforced hollow nanospheres for hydrogen photosynthesis. Nanoscale 7:465–470

    Article  Google Scholar 

  42. Li Y, Fang L, Jin R et al (2015) Preparation and enhanced visible light photocatalytic activity of novel g-C3N4 nanosheets loaded with Ag2CO3 nanoparticles. Nanoscale 7:758–764

    Article  Google Scholar 

  43. Ding J, Liu Q, Zhang Z et al (2015) Carbon nitride nanosheets decorated with WO3 nanorods: ultrasonic-assisted facile synthesis and catalytic application in the green manufacture of dialdehydes. Appl Catal B 165:511–518

    Article  Google Scholar 

  44. Zhao Y, Zhao F, Wang X et al (2014) Graphitic carbon nitride nanoribbons: graphene-assisted formation and synergic function for highly efficient hydrogen evolution. Angew Chem Int Ed 53:13934–13939

    Article  Google Scholar 

  45. Li FT, Zhao Y, Wang Q et al (2015) Enhanced visible-light photocatalytic activity of active Al2O3/g-C3N4 heterojunctions synthesized via surface hydroxyl modification. J Hazard Mater 283:371–381

    Article  Google Scholar 

  46. Chen W, Duan GR, Liu TY et al (2015) Fabrication of Bi2MoO6 nanoplates hybridized with g-C3N4 nanosheets as highly efficient visible light responsive heterojunction photocatalysts for Rhodamine B degradation. Mat Sci Semicond Process 35:45–54

    Article  Google Scholar 

  47. Sun Y, Zhang W, Xiong T et al (2014) Growth of BiOBr nanosheets on C3N4 nanosheets to construct two-dimensional nanojunctions with enhanced photoreactivity for NO removal. J Colloid Interface Sci 418:317–323

    Article  Google Scholar 

  48. Martha S, Nashim A, Parida KM (2013) Facile synthesis of highly active g-C3N4 for efficient hydrogen production under visible light. J Mater Chem A 1:7816–7824

    Article  Google Scholar 

  49. Xu H, Yan J, Xu Y et al (2013) Novel visible-light-driven AgX/graphite-like C3N4 (X = Br, I) hybrid materials with synergistic photocatalytic activity. Appl Catal B 129:182–193

    Article  Google Scholar 

  50. Fu J, Chang B, Tian Y et al (2013) Novel C3N4-CdS composite photocatalysts with organic-inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism. J Mater Chem A 1:3083–3090

    Article  Google Scholar 

  51. Katsumata H, Sakai T, Suzuki T et al (2014) Highly efficient photocatalytic activity of g-C3N4/Ag3PO4 hybrid photocatalysts through Z-scheme photocatalytic mechanism under visible light. Ind Eng Chem Res 53:8018–8025

    Article  Google Scholar 

  52. Jiang D, Chen L, Xie J, Chen M (2014) Ag2S/g-C3N4 composite photocatalysts for efficient Pt-free hydrogen production. The co-catalyst function of Ag/Ag2S formed by simultaneous photodeposition. Dalton Trans 43:4878–4885

    Article  Google Scholar 

  53. Gao B, Liu L, Liu J, Yang F (2013) Photocatalytic degradation of 2,4,6-tribromophenol over Fe-doped ZnIn2S4: Stable activity and enhanced debromination. Appl Catal B 129:89–97

    Article  Google Scholar 

  54. Leary R, Westwood A (2011) Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 49:741–772

    Article  Google Scholar 

  55. Liu Y, Yu YX, Zhang WD (2014) Photoelectrochemical study on charge transfer properties of nanostructured Fe2O3 modified by g-C3N4. Int J Hydrogen Energy 39:9105–9113

    Article  Google Scholar 

  56. Wang X, Maeda K, Thomas A et al (2009) Ametal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  Google Scholar 

  57. Zhang J, Hu Y, Jiang X et al (2014) Design of a direct Z-scheme photocatalyst: Preparation and characterization of Bi2O3/g-C3N4 with high visible light activity. J Hazard Mater 280:713–722

    Article  Google Scholar 

  58. Li W, Li D, Lin Y et al (2012) Evidence for the active species involved in the photodegradation process of methyl orange on TiO2. J Phys Chem C 116:3552–3560

    Article  Google Scholar 

  59. Dai K, Lu L, Liang C et al (2014) Heterojunction of facet coupled g-C3N4/surface-fluorinated TiO2 nanosheets for organic pollutants degradation under visible LED light irradiation. Appl Catal B 156–157:331–340

    Article  Google Scholar 

  60. Liu S, Yang MQ, Xu YJ (2014) Surface charge promotes the synthesis of large, flat structured graphene-(CdS nanowire)-TiO2 nanocomposites as versatile visible light photocatalysts. J Mater Chem A 2:430–440

    Article  Google Scholar 

  61. Han C, Chen Z, Zhang N et al (2015) Hierarchically CdS decorated 1D ZnO nanorods-2D graphene hybrids: low temperature synthesis and enhanced photocatalytic performance. Adv Funct Mater 25:221–229

    Article  Google Scholar 

  62. Zhu Y, Xu D, Meng M (2015) Ultrasonic-assisted synthesis of amorphous Bi2S3 coupled (BiO)2CO3 catalyst with improved visible light-responsive photocatalytic activity. J Mater Sci 50:1594–1604. doi:10.1007/s10853-014-8720-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51272107 and 51372118) and the Jiangsu Funds for Distinguished Young Scientists (Grant No. BK2012035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Heng Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1790 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Liu, TY., Huang, T. et al. One-pot hydrothermal route to synthesize the ZnIn2S4/g-C3N4 composites with enhanced photocatalytic activity. J Mater Sci 50, 8142–8152 (2015). https://doi.org/10.1007/s10853-015-9388-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9388-z

Keywords

Navigation