Skip to main content

Advertisement

Log in

First-principles study of structural, electronic, and ferroelectric properties of rare-earth-doped BiFeO3

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We study the effect of the light rare earth ions La, Ce, Pr, and Nd on electronic structure, structural properties, magnetic states, and ferroelectric properties of BiFeO3 using density functional theory within GGA + U method. The supercell of 40 atoms is considered for four phases: R3c, Pnma, Pn2 1 a, Pbam. We show that, among potential phases, the R3c-G structure of BiFeO3 where one Bi substituted by one of the studied rare-earth elements has the minimal total energy. We predict the values of spontaneous electric polarization in RE-doped BiFeO3 to be above 80 μC cm−2 and a non-zero values of the magnetic moments in RE-doped BiFeO3 for R3c-G phase of the studied systems. Upon introduction of a rare-earth ion to a Bi site, the total magnetic moments are 0 μB, 0.99, 1.99, and 2.98 μB f.u.−1 for La, Ce, Pr, and Nd substitution, respectively. The results of total energy calculations show that the Pn2 1 a and Pnma phases of the BiFeO3 with Ce or Pr substitution of Bi occur on the same energy scale. This close energy scale suggests a coexistence of these phases beyond T = 0 K or under other conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Catalan G, Scott JF (2009) Physics and application of bismuth ferrite. Adv Mater 21:2463–2485

    Article  Google Scholar 

  2. Belik AA (2012) Polar and nonpolar phases of BiMO3: a review. J Solid State Chem 195:32–40

    Article  Google Scholar 

  3. Yang C-H, Kan D, Takeuchi I, Nagarajan V, Seidel J (2012) Doping BiFeO3: approaches and enhanced functionality. Phys Chem Chem Phys 14:15953–15962

    Article  Google Scholar 

  4. Ishiwara H (2012) Impurity substitution effects in BiFeO3 thin films—From a viewpoint of FeRAM applications. Curr Appl Phys 12:603–611

    Article  Google Scholar 

  5. Hill NA (2000) Why are there so few ferromagnetic materials. J Phys Chem B 104:6694–6709

    Article  Google Scholar 

  6. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Lui B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science 299:1719–1722

    Article  Google Scholar 

  7. Béa H, Bibes M, Cherifi S, Nolthing F, Warot-Fonrose B, Fusil S, Herranz G, Deranlot C, Jacquet E, Bouzehouane K, Barthélémy A (2006) Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films. Appl Phys Lett 89:242114-1–242114-3

    Article  Google Scholar 

  8. Fischer P, Polomska M, Sosnowska I, Szymanski M (1980) Temperature dependence of the crystal and magnetic structures of BiFeO3. J Phys C 13:1931–1940

    Article  Google Scholar 

  9. Smolenskii GA, Isupov V, Agranovskaya A, Krasnik N (1961) New ferroelectrics of complex composition IV. Sov Phys Solid State 2:2651–2654

    Google Scholar 

  10. Smolenskii GA, Chupis IE (1982) Ferroelectromagnets. Soviet Phys Uspekhi 25:475–493

    Article  Google Scholar 

  11. Kumar MM, Srinath S, Kumar GS, Suryanarayana SV (1998) Spontaneous magnetic moment in BiFeO3–BaTiO3 solid solutions at low temperatures. J Magn Magn Mater 188:203–212

    Article  Google Scholar 

  12. Popov YuF, Zvezdin AK, Vorobev GP, Kadomtseva AM, Murashev VA, Rakov DN (1993) Linear magnetoelectric effect and phase transitions in bismuth ferrite, BiFeO3. JETP Lett 57:69–73

    Google Scholar 

  13. Zalesskii AV, Frolov AA, Khimich TA, Bush AA (2003) Composition-induced transition of spin-modulated structure into a uniform antiferromagnetic state in a Bi1-xLaxFeO3 system studied using 57Fe NMR. Phys Sol St 45:141 (FTT 45:135)

    Article  Google Scholar 

  14. Chen P, Günaydın-Şen Ö, Ren WJ, Qin Z, Brinzari TV, McGill S, Cheong S-W, Musfeldt JL (2012) Spin cycloid quenching in Nd3+ -substituted BiFeO3. Phys Rev B 86:014407-1–014407-6

    Google Scholar 

  15. Xiao R, Pelenovich VO, Fu D (2013) Spin cycloid destruction in Pr doped BiFeO3 films studied by conversion-electron Mossbauer spectroscopy. Appl Phys Lett 103:012901-1–012901-4

    Google Scholar 

  16. Karimi S, Reaney IM, Han Y, Pokorny J, Sterianou I (2009) Crystal chemistry and domain structure of rare-earth-doped BiFeO3 ceramics. J Mater Sci 44:5102–5112. doi:10.1007/s10853-009-3545-1

    Article  Google Scholar 

  17. Kan D, Palova L, Anbusathaih V, Cheng CJ, Fujino S, Nagarajan V, Rabe KM, Takeuchi I (2010) Universal behaviour and electric-field-induced structural transition in rare earth substituted BiFeO3. Adv Funct Mater 20:1108–1115

    Article  Google Scholar 

  18. Kadomtseva AM, Popov YuF, Pyatakov AP, Vorob’ev GP, Zvezdin AK, Viehland D (2006) Phase transitions in multiferroic crystals, think-layers and ceramics: enduring potential for a single phase, room-temparature magnetoelectric ‘holy grail’. Phase Transit 79:1019–1042

    Article  Google Scholar 

  19. Uniyal P, Yadav K (2009) Observation of the room temperature magnetoelectric effect in Dy doped BiFeO3. J Phys 21:012205-1–012205-4

    Google Scholar 

  20. Catalan G (2006) Magnetocapacitance without magnetic coupling. Appl Phys Lett 88:102902-1–102902-3

    Article  Google Scholar 

  21. Gabbasova ZV, Kuzmin MD, Zvezdin AK, Dubenko IS, Murashov VA, Rakov DN, Krynetsky IB (1991) Bi 1x R x FeO3 (R = rare earth): a family of novel magnetoelectric. Phys Lett A 158:491–498

    Article  Google Scholar 

  22. Quan Z, Liu W, Hu H, Xu S, Sebo B, Fang G, Li M, Zhao Z (2008) Microstructure, electrical and magnetic properties of Ce-doped BiFeO3 thin films. J Appl Phys 104:084106–1–084106–10

    Article  Google Scholar 

  23. Quan Z, Hu H, Xu S, Liu W, Fang G, Li M, Zhao Z (2008) Surface chemical bonding states and ferroelectricityof Ce-doped BiFeO3 thin films prepared by sol-gel process. J Sol–Gel Sci Technol 48:261–266

    Article  Google Scholar 

  24. Wang X, Liu H, Yan B (2008) Enhanced ferroelectric properties of Ce–subsituted BiFeO3 thin films prepared by sol–gel process. J Sol–Gel Sci Technol 47:124–127

    Article  Google Scholar 

  25. Gupta S, Tomar M, James AR, Gupta V (2014) Ce–doped bismuth ferrite thin films with improved electrical and functional properties. J Mater Sci 49:5355–5364. doi:10.1007/s10853-014-8243-y

    Article  Google Scholar 

  26. Lee YH, Wu J-M, Lai C-H (2006) Influence of La doping in multiferroic properties of BiFeO 3 thin films. Appl Phys Lett 88:042903-1–042903-3

    Google Scholar 

  27. Destro FB, Moura F, Foschini CR, Ranieri MG, Longo E, Simões AZ (2014) Electrical behavior of Bi0.95Nd0.05FeO3 thin films grown by the soft chemical method. Ceram Int 40:8715–8722

    Article  Google Scholar 

  28. Huang F, Lu X, Lin W, Wu X, Kann Y, Zhu J (2006) Effect of Nd dopant on magnetic and electric properties of BiFeO 3 thin films prepared by metal organic deposition method. Appl Phys Lett 89:242914-1–242914-3

    Google Scholar 

  29. Yu B, Li M, Hu Z, Pei L, Guo D, Zhao X, Dong S (2008) Enhanced multiferroic properties of the high-valence Pr doped BiFeO 3 thin film. Appl Phys Lett 93:182909-1–182909-3

    Google Scholar 

  30. Rusakov DA, Abakumov AM, Yamaura K, Belik AA, van Tendeloo G, Takayama-Muromashi E (2011) Structural evolution of the BiFeO3-LaFeO3 system. Chem Mat 23:285–292

    Article  Google Scholar 

  31. Zhang ST, Pang LH, Zhang Y, Lu MH, Chen YF (2006) Preparation, structures, and multiferroic properties of single phase Bi1−x La x FeO 3 (x = 0–0.40) ceramics. J Appl Phys 100:114108-1–114108-6

    Google Scholar 

  32. Chen JR, Yang WL, Li J-B, Rao GH (2008) X-ray diffraction analysis and specific heat capacity of (Bi1-x La x )FeO3 perovskites. J Alloy Compd 459:66–70

    Article  Google Scholar 

  33. González-Vázquez OE, Wojdeł JC, Diéguez O, Íñiguez J (2012) First-principles investigation of the structural phases and enhanced response properties of the BiFeO3–LaFeO3 multiferroic solid solution. Phys Rev B 85:064119-1–064119-10

    Article  Google Scholar 

  34. Kumar N, Panwar N, Gahtori B, Singh N, Kishan H, Awana VPS (2010) Structural, dielectric, and magnetic propertiesof Pr substituted Bi1–xPrxFeO3 (0 ≤ x ≤ 0.15) multiferroic compounds. J Alloy Compd 501:L29–L32

    Article  Google Scholar 

  35. Khomchenko AV, Troyanchuk IO, Karpinsky DV, Paixião JA (2012) Structural and magnetic phase transition in Bi 1x Pr x FeO3 perovskites. J Mater Sci 47:1578–1581. doi:10.1007/s10853-011-6040-4

    Article  Google Scholar 

  36. Xu B, Wang D, Íñiguez J, Bellaiche L (2015) Finite–temperature properties of rare-earth substituted BiFeO3 multiferroc solid solutions. Adv Funct Mater 25:552–558

    Article  Google Scholar 

  37. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17853–17979

    Article  Google Scholar 

  38. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  Google Scholar 

  39. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  Google Scholar 

  40. Perdew JP, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  41. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron–energy–loss spectra and the structural stability of nickel oxide: an LSDA + U study, Phys Rev B 57:1505-1509. Anisimov VI, Aryasetiawan F and Lichtenstein AI (1997) First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J Phys 9:767–808

    Google Scholar 

  42. Neaton JB, Ederer C, Waghmare UV, Spaldin NA, Rabe KM (2005) First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys Rev B 71:014113-1–014113-8

    Article  Google Scholar 

  43. Wang Y, Saal JE, Wu P, Wang J, Shang S, Liu Z-K, Chen L-Q (2011) First-principles lattice dynamics and heat capacity of BiFeO3. Acta Mater 59:4229–4234

    Article  Google Scholar 

  44. Diéguez O, González-Vázquez OE, Wojdeł JC, Íñiguez J (2011) First-principles predictions of low-energy phases of multiferroic BiFeO3. Phys Rev B 83:094105-1–09410509410513

    Article  Google Scholar 

  45. He C, Ma ZJ, Sun BZ, Sa RJ, Wu K (2015) The electronic, optical and ferroelectric properties of BiFeO3 during polarization reversal: a first principle study. J Alloy Compnd 623:393–400

    Article  Google Scholar 

  46. Kornev IA, Lisenkov S, Haumont R, Dkhil B, Bellaiche L (2007) Finite-temperature properties of multiferroic BiFeO3. Phys Rev Lett 99:227602-1–227602-4

    Article  Google Scholar 

  47. van der Marel D, Sawatzky GA (1988) Electron-electron interaction and localization in d and f transition metals. Phys Rev B 37:10674–10684

    Article  Google Scholar 

  48. Anisimov VI, Gunnarsson O (1991) Density-functional calculation of effective Coulomb interaction in metals. Phys Rev B 43:7570–7574

    Article  Google Scholar 

  49. Singh N, Saini SM, Nautiyal T, Auluck S (2006) Electronic structure and optical properties of rare earth sesquioxides (R2O3, R = La, Pr and Nd). J Appl Phys 100:083525-1–083525-5

    Google Scholar 

  50. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin-denstity calculations: a critical analysis. Can J Phys 58:1200–1211

    Article  Google Scholar 

  51. Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F (2006) Linear optical properties in the projector-augmented wave methodology. Phys Rev B 73:045112-1–045112-9

    Google Scholar 

  52. Baroni S, Resta R (1986) Ab initio calculation of the macroscopic dielectric constant in silicon. Phys Rev B 33:7017–7021

    Article  Google Scholar 

  53. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Phys Chem 92:5397–5403

    Article  Google Scholar 

  54. Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–686

    Article  Google Scholar 

  55. Karpinsky DV, Troyanchuk IO, Tovar M, Sikolenko V, Efimov V, Efimova E, Shur VYA, Kholkin AL (2014) Temperature and composition-induced structural transitions in Bi 1x La(Pr) x FeO3 ceramics. J Am Ceram Soc 97:2631–2638

    Article  Google Scholar 

  56. Karpinsky DV, Troyanchuk IO, Tovar M, Sikolenko V, Efimov V, Efimova E, Willingen M, Salak AN, Kholkin AL (2014) Phase coexistence in Bi 1x Pr x FeO3 ceramics. J Mater Sci 49:6937–6943. doi:10.1007/s10853-014-8398-6

    Article  Google Scholar 

  57. Srivastava A, Singh HK, Awana VPS, Srivastava ON (2013) Enhancement in magnetic and dielectric properties of La and Pr cosubstituted BiFeO3. J Alloy Compd 552:336–344

    Article  Google Scholar 

  58. Singh SK, Ishiwara H (2006) Doping effect of rare-earth ions on electrical properties of BiFeO3 thin films fabricated by chemical solution deposition. Jpn J Appl Phys 45:3194–3197

    Article  Google Scholar 

  59. Liu J, Li M, Pei L, Wang J, Yu B, Wang X, Zhao Z (2010) Structural and multiferroic properties of the Ce–doped BiFeO3 thin films. J Alloy Compd 493:544–548

    Article  Google Scholar 

  60. Uchida H, Ueno R, Funakubo H, Koda S (2006) Crystal structure and ferroelectric properties of rare-earth substituted BiFeO3 thin films. J Appl Phys 100:014106-1–014106-9

    Google Scholar 

  61. Yuan GL, Or SW, Liu JM (2006) Structural transformation and feeroelectromagnetic behavior in single phase Bi1–xNdxFeO3 multiferroic ceramics. Appl Phys Lett 89:052905-1–052905-3

    Google Scholar 

  62. Lee J-H, Choi HJ, Lee D, Kim MG, Bark CW, Ryu S, Oak M-A, Jang HM (2010) Variation of ferroelectric off-centering distortion and 3d-4p orbital mixing in La-doped BiFeO3 multiferroics. Phys Rev B 82:045113-1–045113-8

    Google Scholar 

  63. Xu X, Tan G, Dong G, Liu W, Ren H (2014) Studies on structural, electrical and optical properties of multiferroic (Ag, Ni and In) codoped Bi0.9Nd0.1FeO3 thin films. Appl Surf Sci 292:702–709

    Article  Google Scholar 

  64. Singh V, Sharma S, Kumar M, Kotnala RK, Dwivedi RK (2014) Structural transition, magnetic and optical properties of Pr and Ti co-doped BiFeO3 ceramics. J Magn Magn Matter 349:264–267

    Article  Google Scholar 

  65. Lebeugle D, Colson D, Forget A, Viret M, Bonville P, Marucco JF, Fusil S (2007) Room-temperature coexistance of large electric polarization and magnetic order in BiFeO3 single crystal. Phys Rev B 76:024116-1–024116-8

    Article  Google Scholar 

  66. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    Article  Google Scholar 

  67. Kaczkowski J, Pugaczowa-Michalska M, Jezierski A (2015) Electronic structures of BiFeO3 in different crystal phases. Acta Phys Pol, A 127:266–268

    Article  Google Scholar 

  68. Zhang Z, Wu P, Chen L, Wang J (2010) Systematic variations in structural and electronic properties of BiFeO3 by A-site substitution. Appl Phys Lett 96:012905-1–012905-3

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Centre (Poland) through the Grant nr DEC–2011/01/B/ST3/02212.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kaczkowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pugaczowa-Michalska, M., Kaczkowski, J. First-principles study of structural, electronic, and ferroelectric properties of rare-earth-doped BiFeO3 . J Mater Sci 50, 6227–6235 (2015). https://doi.org/10.1007/s10853-015-9183-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9183-x

Keywords

Navigation