Skip to main content
Log in

Structure and electrical properties of IrO2-doped 0.5Ba0.7Ca0.3TiO3–0.5BaTi0.8Zr0.2O3 ceramics via low-temperature sintering

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lead-free ceramics 0.5Ba0.7Ca0.3TiO3–0.5BaTi0.8Zr0.2O3xIrO2 (x = 0–1.2 %) were prepared at a low temperature of 1260 °C via sintering the as-synthesized nanoparticles, which were synthesized by a modified Pechini polymeric precursor method. All samples featured high levels of densification under the synthesis conditions; particularly, the ceramic prepared at IrO2 content of 0.4 % achieved the highest relative density (~97.4 %). Phase transition from tetragonal to orthorhombic and a polymorphic phase transition (PPT) region were observed, which were influenced by the IrO2 content. The dielectric properties, temperature coefficient of capacitance, ferroelectric properties, and piezoelectric properties as a function of IrO2 content were thoroughly studied. Optimal electrical properties (remnant polarization, piezoelectric constant, and planar electromechanical coupling factors, i.e., P r = 6.28 μC/cm2, d 33 = 199 pC/N, and k p = 0.258) were obtained around the PPT region. The findings of the ceramic electrical properties by IrO2 doping are believed to be insightful in the development of lead-free dielectric and ferroelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cross E (2004) Materials science: lead-free at last. Nature 432:24–25

    Article  Google Scholar 

  2. Damjanovic D, Klein N, Li J, Porokhonskyy V (2010) What can be expected from lead-free piezoelectric materials? Funct Mater Lett 03:5–13

    Article  Google Scholar 

  3. Chen J, Chen XL, He F, Wang YL, Zhou HF, Fang L (2014) Thermally stable BaTiO3-Bi(Mg0.75W0.25)O3 solid solutions: sintering characteristics, phase evolution, Raman spectra, and dielectric properties. J Electron Mater 43:1112–1118

    Article  Google Scholar 

  4. Hennings D, Schreinemacher H (1995) Ca-acceptors in dielectric ceramics sintered in reductive atmospheres. J Eur Ceram Soc 15:795–800

    Article  Google Scholar 

  5. Zhang Q, Sun H, Wang X, Zhang Y, Li X (2014) Strong photoluminescence and piezoelectricity properties in Pr-doped Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics: influence of concentration and microstructure. J Eur Ceram Soc 34:1439–1444

    Article  Google Scholar 

  6. Liu WF, Ren XB (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103:257602

    Article  Google Scholar 

  7. Wu J, Wu W, Xiao D, Wang J, Yang Z, Peng Z, Chen Q, Zhu J (2012) (Ba, Ca)(Ti, Zr)O3-BiFeO3 lead-free piezoelectric ceramics. Curr Appl Phys 12:534–538

    Article  Google Scholar 

  8. Kaushal A, Olhero S, Singh B, Zamiri R, Saravanan V, Ferreira J (2014) Successful aqueous processing of a lead free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 piezoelectric material composition. RSC Adv 4:26993–27002

    Article  Google Scholar 

  9. Shrout TR, Zhang SJ (2007) Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram 19:113–126

    Article  Google Scholar 

  10. Zhang L, Ren X (2006) Aging behavior in single-domain Mn-doped BaTiO3 crystals: implication for a unified microscopic explanation of ferroelectric aging. Phys Rev B 73:094121

    Article  Google Scholar 

  11. Kaushal A, Olhero S, Singh B, Fagg D, Bdikin I, Ferreira J (2014) Impedance analysis of 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics consolidated from micro-granules. Ceram Int 40:10593–10600

    Article  Google Scholar 

  12. Kaushal A, Olhero S, Ferreira J (2013) Lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 powder surface treated against hydrolysis—a key for a successful aqueous processing. J Mater Chem C 1:4846–4853

    Article  Google Scholar 

  13. Wu W, Cheng L, Bai S, Dou W, Xu Q, Wei Z, Qin Y (2013) Electrospinning lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires and their application in energy harvesting. J Mater Chem A 1:7332–7338

    Article  Google Scholar 

  14. Mishra P, Kumar SP (2012) Effect of sintering temperature on dielectric, piezoelectric and ferroelectric properties of BZT-BCT 50/50 ceramics. J Alloys Compd 545:210–215

    Article  Google Scholar 

  15. Srinivas A, Krishnaiah RV, Niranjani VL, Kamat SV, Karthik T, Asthana S (2015) Ferroelectric, piezoelectric and mechanical properties in lead free (0.5)Ba(Zr0.2Ti0.8)O3-(0.5)(Ba0.7Ca0.3)TiO3 electroceramics. Ceram Int 41:1980–1985

    Article  Google Scholar 

  16. Ehmke MC, Daniels J, Glaum J, Hoffman M, Blendell JE, Bowman KJ (2013) In situ X-ray diffraction of biased ferroelastic switching in tetragonal lead-free (1 − x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 piezoelectrics. J Am Ceram Soc 96:2913–2920

    Article  Google Scholar 

  17. Liu YX, Masumoto H, Goto T (2005) Structural, electrical and optical characterization of SrIrO3 thin films prepared by laser-ablation. Mater Trans 46:100–104

    Article  Google Scholar 

  18. Choi KJ, Baek SH, Jang HW, Belenky LJ, Lyubchenko M, Eom CB (2010) Phase-transition temperatures of strained single-crystal SrRuO3 thin films. Adv Mater 22:759–762

    Article  Google Scholar 

  19. Tian YS, Gong YS, Zhang ZL, Meng DW (2014) Phase evolutions and electric properties of BaTiO3 ceramics by a low-temperature sintering process. J Mater Sci Mater Electron 25:5467–5474

    Article  Google Scholar 

  20. Tian YS, Gong YS, Meng DW, Li YJ, Kuang BY (2015) Dielectric dispersion, diffuse phase transition, and electrical properties of BCT-BZT ceramics sintered at a low-temperature. J Electron Mater. doi:10.1007/s11664-015-3727-3

    Google Scholar 

  21. Tian YS, Gong YS, Meng DW, Cao SQ (2015) Structure and electrical properties of Ir4+-doped 0.5Ba0.9Ca0.1TiO3-0.5BaTi0.88Zr0.12O3-0.12%La ceramics via a modified Pechini method. Mater Lett 153:44–546

    Article  Google Scholar 

  22. Tian YS, Gong YS, Wu MY, Meng DW, Jin HY (2014) Study on the densification of BaIrO3 bulks by spark plasma sintering and its films deposition. J Electroceram. doi:10.1007/s10832-014-9961-x

    Google Scholar 

  23. Wu J, Xiao D, Wu W, Chen Q, Zhu J, Yang Z, Wang J (2012) Composition and poling condition-induced electrical behavior of (Ba0.85Ca0.15)(Ti1−xZrx)O3 lead-free piezoelectric ceramics. J Eur Ceram Soc 32:891–898

    Article  Google Scholar 

  24. Lee YC, Yeh YY, Tsai PR (2012) Effect of microwave sintering on themicrostructure and electric properties of (Zn, Mg)TiO3-based multilayer ceramic capacitors. J Eur Ceram Soc 32:1725–1732

    Article  Google Scholar 

  25. Morrison FD, Sinclair DC, Skakle JMS, West AR (1998) Novel doping mechanism for very-high-permittivity barium titanate ceramics. J Am Ceram Soc 81:1957–1960

    Article  Google Scholar 

  26. Dong L, Stone DS, Lakes RS (2012) Enhanced dielectric and piezoelectric properties of xBaZrO3-(1 − x)BaTiO3 ceramics. J Appl Phys 111:084107

    Article  Google Scholar 

  27. Chen T, Zhang T, Wang G, Zhou J, Zhang J, Liu Y (2012) Effect of CuO on the microstructure and electrical properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 piezoceramics. J Mater Sci 47:4612–4619. doi:10.1007/s10853-012-6326-1

    Article  Google Scholar 

  28. Lin W, Fan L, Lin D, Zheng Q, Fan X, Sun H (2013) Phase transition, ferroelectric and piezoelectric properties of Ba1−xCaxTi1−yZryO3 lead-free ceramics. Curr Appl Phys 13:159–164

    Article  Google Scholar 

  29. Zhang L, Thakur OP, Feteira A, Keith GM, Mould AG, Sinclair DC, West AR (2007) Comment on the use of calcium as a dopant in X8R BaTiO3-based ceramics. Appl Phys Lett 90:142914-1–142914-3

    Google Scholar 

  30. Tang X, Wang J, Wang X, Chan H (2004) Effects of grain size on the dielectric properties and tunabilities of sol-gel derived Ba(Zr0.2Ti0.8)O3 ceramics. Solid State Commun 131:163–168

    Article  Google Scholar 

  31. Hong JY, Lu HY (2014) Polar nanoregions and dielectric properties of BaTiO3-based Y5V multilayer ceramic capacitors. J Am Ceram Soc 97:2256–2263

    Article  Google Scholar 

  32. Shen ZB, Wang XH, Gong HL, Wu LW, Li LT (2014) Effect of MnO2 on the electrical and dielectric properties of Y-doped Ba0.95Ca0.05Ti0.85Zr0.15O3 ceramics in reducing atmosphere. Ceram Int 40:13833–13839

    Article  Google Scholar 

  33. Maiti T, Guo R, Bhalla A (2008) Structure property phase diagram of BaZr x Ti1−x O3 system. J Am Ceram Soc 91:1769–1780

    Article  Google Scholar 

  34. Merz WJ (1950) The effect of hydrostatic pressure on the Curie point of barium titanate single crystals. Phys Rev 77:52–54

    Article  Google Scholar 

  35. Jeong IK, Park CY, Ahn JS, Park S, Kim DJ (2010) Ferroelectric-relaxor crossover in Ba(Ti1−x Zr x )O3 studied using neutron total scattering measurements and reverse Monte Carlo modeling. Phys Rev B 81:214119-1–214119-5

    Google Scholar 

  36. Zhang JL, Zong XJ, Wu L, Gao Y, Zheng P, Shao SF (2009) Polymorphic phase transition and excellent piezoelectric performance of (K0.55Na0.45)0.965Li0.035Nb0.80Ta0.20O3 lead-free ceramics. Appl Phys Lett 95:022909-1–022909-3

    Google Scholar 

  37. Dai YJ, Zhang XW, Chen KP (2009) Morphotropic phase boundary and electrical properties of K1-xNaxNbO3 lead-free ceramics. Appl Phys Lett 94:042905-1–042905-3

    Google Scholar 

  38. Zhou PF, Zhang BP, Zhao L, Zhao XK, Zhu LF, Cheng LQ, Li JF (2013) High piezoelectricity due to multiphase coexistence in low-temperature sintered (Ba, Ca)(Ti, Sn)O3-CuOx ceramics. Appl Phys Lett 103:172904–1–172904-5

    Google Scholar 

  39. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432:84–87

    Article  Google Scholar 

  40. Coondoo I, Panwar N, Amorín H, Alguero M, Kholkin AL (2013) Synthesis and characterization of lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic. J Appl Phys 113:214107–1–214107-6

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by Fundamental Research Funds for National University (CUG120118), State Key Laboratory of Advanced Technology for Materials Synthesis Processing (Wuhan University of Technology, 2012-KF-3). The authors express sincere thanks to Dr. Hongquan Wang for FESEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yansheng Gong or Dawei Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Gong, Y., Meng, D. et al. Structure and electrical properties of IrO2-doped 0.5Ba0.7Ca0.3TiO3–0.5BaTi0.8Zr0.2O3 ceramics via low-temperature sintering. J Mater Sci 50, 6134–6141 (2015). https://doi.org/10.1007/s10853-015-9170-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9170-2

Keywords

Navigation