Skip to main content
Log in

PVP a binder for the manufacture of ultrathin ITO/polymer nanocomposite films with improved electrical conductivity

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper presents the manufacture of ultrathin (<1 µm) transparent conductive indium tin oxide (ITO) films based on nanoparticulate ITO slurries by the profile rod technique using the binder polyvinyl pyrrolidone (PVP) as an organic additive. The influence of the slurry composition on the film thickness and the specific electrical resistance as well as the transmission of the dried films is evaluated. The organic solvent ethanol and different types of the PVP binder were tested for slurry preparation and layer performance. ITO green films with low specific electrical resistance of 3 Ω cm, 87 % inline transmission, and layer thicknesses of only 250 nm could be manufactured. Furthermore, the influence of heat treatments up to 400 °C on the electrical properties of the ITO films was evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Minami T (2005) Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol 20(4):S35–S44

    Article  Google Scholar 

  2. Granqvist CG, Hultåker A (2002) Transparent and conducting ITO films: new developments and applications. Thin Solid Films 411(1):1–5

    Article  Google Scholar 

  3. Hosono H (2007) Recent progress in transparent oxide semiconductors: materials and device application. Thin Solid Films 515(15):6000–6014

    Article  Google Scholar 

  4. Liu H, Avrutin V, Izyumskaya N, Özgür Ü, Morkoç H (2010) Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices Microstruct 48(5):458–484

    Article  Google Scholar 

  5. Gordon RG (2000) Criteria for choosing transparent conductors. MRS Bull 25(08):52–57

    Article  Google Scholar 

  6. Straue N, Rauscher M, Walther S, Faber H, Roosen A (2009) Preparation and soft lithographic printing of nano-sized ITO-dispersions for the manufacture of electrodes for TFTs. J Mater Sci 44(22):6011–6019 doi:10.1007/s10853-009-3804-1

    Article  Google Scholar 

  7. Gläser HJ (2000) Large area glass coating, 1st edn. Von Ardenne Anlagentechnik, Dresden

    Google Scholar 

  8. Gross M, Winnacker A, Wellmann PJ (2007) Electrical, optical and morphological properties of nanoparticle indium–tin–oxide layers. Thin Solid Films 515(24):8567–8572

    Article  Google Scholar 

  9. Kölpin N, Wegener M, Teuber E, Polster S, Frey L, Roosen A (2013) Conceptional design of nano-particulate ITO inks for inkjet printing of electron devices. J Mater Sci 48(4):1623–1631. doi:10.1007/s10853-012-6919-8

    Article  Google Scholar 

  10. Hwang M, Jeong B, Moon J, Chun S, Kim J (2011) Inkjet-printing of indium tin oxide (ITO) films for transparent conducting electrodes. Mater Sci Eng, B 176(14):1128–1131

    Article  Google Scholar 

  11. Singh M, Haverinen HM, Dhagat P, Jabbour GE (2010) Inkjet printing-process and its applications. Adv Mater 22(6):673–685

    Article  Google Scholar 

  12. Le Hue P (1998) Progress and trends in ink-jet printing technology. J Imaging Sci Technol 42(1):49–62

    Google Scholar 

  13. Wegener M, Gillert M, Durst F, Roosen A (2013) Fabrication of functional nanoparticulate coating in the submicrometer range with the slot die process. cfi/Ber. DKG 90(10):E35–E42

  14. Wegener M, Eckert D, Roosen A (2015) Manufacture of sub-μm thin, particulate-based ITO layers by roller coating. J Eur Ceram Soc 35(8):2321–2332

    Article  Google Scholar 

  15. Ederth J, Heszler P, Hultåker A, Niklasson G, Granqvist C (2003) Indium tin oxide films made from nanoparticles: models for the optical and electrical properties. Thin Solid Films 445(2):199–206

    Article  Google Scholar 

  16. Al-Dahoudi N, Aegerter MA (2006) Comparative study of transparent conductive In2O3: Sn (ITO) coatings made using a sol and a nanoparticle suspension. Thin Solid Films 502(1–2):193–197

    Article  Google Scholar 

  17. Straue N, Rauscher M, Dressler M, Roosen A (2012) Tape casting of ITO green tapes for flexible electroluminescent lamps. J Am Ceram Soc 95(2):684–689

    Article  Google Scholar 

  18. Gross M, Linse N, Maksimenko I, Wellmann PJ (2009) Conductance enhancement mechanisms of printable nanoparticulate indium tin oxide (ITO) layers for application in organic electronic devices. Adv Eng Mater 11(4):295–301

    Article  Google Scholar 

  19. Königer T, Münstedt H (2009) Influence of polyvinylpyrrolidone on properties of flexible electrically conducting indium tin oxide nanoparticle coatings. J Mater Sci 44(11):2736–2742. doi:10.1007/s10853-009-3357-3

    Article  Google Scholar 

  20. Lutz C, Roosen A (1998) Wetting behavior of tape casting slurries on polymeric tape carriers. Ceram Trans 83:163–170

    Google Scholar 

  21. Nahass P, Pober RL, Rhine WE, Robbins WL, Bowen HK (1990) A comparison of aqueous and non-aqueous slurries for tape casting. Ceram Trans 15:355–364

    Google Scholar 

  22. Feng J, Dogan F (2000) Aqueous processing and mechanical properties of PLZT green tapes. Mater Sci Eng, A 283(1–2):56–64

    Article  Google Scholar 

  23. Doreau F, Tarì G, Pagnoux C, Chartier T, Ferreira J (1998) Processing of aqueous tape-casting of alumina with acrylic emulsion binders. J Eur Ceram Soc 18(4):311–321

    Article  Google Scholar 

  24. Ryu BH, Takahashi M, Suzuki S (1990) Rheological characteristics of aqueous tape-casting of alumina with acrylic emulsion binder. J Ceram Soc Jpn 6(101):626–631

    Google Scholar 

  25. Chartier T, Bruneau A (1993) Aqueous tape casting of alumina substrates. J Eur Ceram Soc 12(4):243–247

    Article  Google Scholar 

  26. Hotza D, Greil P (1995) Review: aqueous tape casting of ceramic powders. Mater Sci Eng, A 202(1–2):206–217

    Article  Google Scholar 

  27. Raeder H, Simon C, Chartier T, Toftegaard HL (1994) Tape casting of zirconia for ion conducting membranes: a study of dispersants. J Eur Ceram Soc 13(6):485–491

    Article  Google Scholar 

  28. Roosen A, Hessel F, Fischer H, Aldinger F (1990) Interaction of Polyvinylbutyral with alumina. Ceram Trans 12:451–459

    Google Scholar 

  29. PVB (2014) Sigma Aldrich. http://www.sigmaaldrich.com/catalog/product/aldrich/418439?lang=de&region=DE

  30. PVP (2014) Sigma Aldrich. http://www.sigmaaldrich.com/catalog/product/sial/pvp40?lang=de&region=DE

  31. Reindl A, Mahajeri M, Hanft J, Peukert W (2009) The influence of dispersing and stabilizing of indium tin oxide nanoparticles upon the characteristic properties of thin films. Thin Solid Films 517(5):1624–1629

    Article  Google Scholar 

  32. Ahmad B, Ahmad N, Saeed A, Islam N (1995) Rheology of poly(vinyl pyrrolidone) in aqueous and organic media. J Chem Soc Pak 17(1):7–10

    Google Scholar 

  33. Zhang J, Jiang D, Lin Q (2005) Poly(vinyl pyrrolidone), a dispersant for non-aqueous processing of silicon carbide. J Am Ceram Soc 88(4):1054–1056

    Article  Google Scholar 

  34. König Tobias A F, Ledin PA, Kerszulis J, Mahmoud MA, El-Sayed MA, Reynolds JR, Tsukruk VV (2014) Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer. ACS Nano 8(6):6182–6192

    Article  Google Scholar 

  35. Hunt AG, Ewing RP (2009) Percolation theory for flow in porous media, 2nd edn. Lecture notes in physics vol 771. Springer, Berlin

  36. Guido Falk (ed) (2012) Sintering of Transparent Conductive Oxides: From Oxide Ceramic Powders to Advanced Optoelectronic Materials. INTECH Open Access Publisher

Download references

Acknowledgements

The financial support of the German Research Foundation (DFG, Graduiertenkolleg 1161), as well as the support of our industrial partner Evonik Industries AG, Essen, Germany, is gratefully acknowledged. The authors thank Rubitha Srikantharajah for the scanning electron microscope images of the dried ITO agglomerates (Figs. 7, 9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Roosen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wegener, M., Kato, M., Kakimoto, Ki. et al. PVP a binder for the manufacture of ultrathin ITO/polymer nanocomposite films with improved electrical conductivity. J Mater Sci 50, 6124–6133 (2015). https://doi.org/10.1007/s10853-015-9168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9168-9

Keywords

Navigation