Skip to main content
Log in

Polycrystalline silicon foils by flash lamp annealing of spray-coated silicon nanoparticle dispersions

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel technique for the preparation of thin silicon foils (d ≈ 10 µm) starting from silicon nanoparticle dispersions is reported. The basic steps are ultrasonic spray coating of mixtures of silicon nanoparticles and organosilicon compounds and subsequent flash lamp annealing (FLA). The organosilicon compounds are used to stabilize the silicon nanoparticles in dispersion. The FLA induces melting of the silicon nanoparticles which transform into polycrystalline silicon thin films. Parameter adjustment (e.g., pressure, flash duration, flash energy, and substrate temperature) allows for the preparation of thin films as well as free-standing and flexible silicon foils. If the sprayed film thickness reaches a critical value (d ≈ 20 µm) and the FLA is performed under vacuum conditions (5 × 10−3 mbar), then the film peels off from the molybdenum substrate. In a following step, the foil is flashed by FLA from the backside. This method targets thin silicon foils exhibiting thicknesses between 5 and 10 µm. The lateral size of silicon foils depends on the setup used. In this work, samples with a maximum area of approximately 5 × 5 cm2 were produced. The silicon foils were investigated by scanning electron microscopy and spectroscopic ellipsometry to determine thickness, surface structure, and the effective dielectric response. The compositions (Si, C, and O) and the bond characteristics of Si–O and Si–C were analyzed by means of energy dispersive X-ray spectroscopy and X-ray photoemission spectroscopy. Transmission electron microscopy and X-ray diffraction provided the average sizes of the silicon nanoparticles before and after FLA. A rough estimation of the free charge carrier concentration [n el ≈ (1013–1014) cm−3] was possible by electrical four-point probe measurements taking into account information on crystallite sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Research National Center for Photovoltaics (2013) Renewable Energy Laboratory. http://www.nrel.gov/ncpv/. Accessed 10 Oct 2014

  2. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2012) Solar cell efficiency tables (version 39). Prog Photovoltaics Res Appl 20(1):12–20. doi:10.1002/pip.2163

    Article  Google Scholar 

  3. Mertens K (2013) Photovoltaik: Lehrbuch zu Grundlagen, Technologie und Praxis. Carl Hanser Verlag GmbH Co KG, München

    Book  Google Scholar 

  4. Dross F, Baert K, Bearda T, Deckers J, Depauw V, El Daif O, Gordon I, Gougam A, Govaerts J, Granata S, Labie R, Loozen X, Martini R, Masolin A, O’Sullivan B, Qiu Y, Vaes J, Van Gestel D, Van Hoeymissen J, Vanleenhove A, Van Nieuwenhuysen K, Venkatachalam S, Meuris M, Poortmans J (2012) Crystalline thin-foil silicon solar cells: where crystalline quality meets thin-film processing. Prog Photovoltaics Res Appl 20(6):770–784. doi:10.1002/pip.1238

    Article  Google Scholar 

  5. Dross F, Robbelein J, Vandevelde B, Van Kerschaver E, Gordon I, Beaucarne G, Poortmans J (2007) Stress-induced large-area lift-off of crystalline Si films. Appl Phys A 89(1):149–152. doi:10.1007/s00339-007-4195-2

    Article  Google Scholar 

  6. Hernández D, Trifonov T, Garín M, Alcubilla R (2013) “Silicon millefeuille”: From a silicon wafer to multiple thin crystalline films in a single step. Appl Phys Lett 102(17):172102. doi:10.1063/1.4803009

    Article  Google Scholar 

  7. Büchter B, Seidel F, Fritzsche R, Toader I, Buschbeck R, Jakob A, Schulze S, Freitag H, Lang H, Hietschold M, Zahn DRT, Mehring M (2014) Ultrasonic spray coating and flash lamp annealing of silicon nanoparticle dispersions for silicon thin film formation. J Mater Sci 49(23):7979–7990. doi:10.1007/s10853-014-8505-8

    Article  Google Scholar 

  8. Freitag H, Zahn DRT, Jakob A, Buschbeck R, Lang H (2011) Patent DE1020100372781A1

  9. Seidel F (2015) Dünne Siliziumschichten für photovoltaische Anwendungen hergestellt durch ein Ultraschall-Sprühverfahren. Dissertation, Technische Universität Chemnitz

  10. Leu J-T, Chen L-J, Lu L-R (1982) The recrystalization of BF2+ -implanted silicon by light-flash annealing. Solid State Electron 25(7):559–563. doi:10.1016/0038-1101(82)90056-9

    Article  Google Scholar 

  11. Pécz B, Dobos L, Panknin D, Skorupa W, Lioutas C, Vouroutzis N (2005) Crystallization of amorphous-Si films by flash lamp annealing. Appl Surf Sci 242(1–2):185–191. doi:10.1016/j.apsusc.2004.08.015

    Article  Google Scholar 

  12. McMahon RA, Smith MP, Seffen KA, Voelskow M, Anwand W, Skorupa W (2007) Flash-lamp annealing of semiconductor materials—applications and process models. Vacuum 81(10):1301–1305. doi:10.1016/j.vacuum.2007.01.033

    Article  Google Scholar 

  13. Kim D-H, Kim B-K, Kim HJ, Park S (2012) Crystallization of amorphous silicon thin-film on glass substrate preheated at 650 °C using Xe arc flash of 400μs. Thin Solid Films 520(21):6581–6588. doi:10.1016/j.tsf.2012.07.006

    Article  Google Scholar 

  14. Fritzsche R, Seidel F, Rüffer T, Buschbeck R, Jakob A, Freitag H, Zahn DRT, Lang H, Mehring M (2014) New organosilanes based on N-methylpyrrole—synthesis, structure and characterization. J Organomet Chem 755:86–92. doi:10.1016/j.jorganchem.2014.01.009

    Article  Google Scholar 

  15. Yang DS, Bancroft GM, Puddephatt RJ, Bursten BE, McKee SD (1989) Electronic structure of platinum complexes (.eta.5-C5H5)Pt(CH3)3 and (.eta.5-C5(CH3)5)Pt(CH3)3 from UV photoelectron spectra. Inorg Chem 28(5):872–877. doi:10.1021/ic00304a015

    Article  Google Scholar 

  16. Dykhuizen RC, Smith MF (1998) Gas dynamic principles of cold spray. J Therm Spray Tech 7(2):205–212. doi:10.1361/105996398770350945

    Article  Google Scholar 

  17. Scherrer P (1918) Nachrichten von der Königlichen Gesellschaft der Wissenschaft zu Göttingen. Nachr Ges Wiss Göttingen 2:98

    Google Scholar 

  18. Guinier A (1994) X-ray diffraction: in crystals, imperfect crystals, and amorphous bodies. Courier Dover Publications, New York

    Google Scholar 

  19. Bruggeman DAG (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys 416(7):636–664. doi:10.1002/andp.19354160705

    Article  Google Scholar 

  20. Uhlir A (1955) The potentials of infinite systems of sources and numerical solutions of problems in semiconductor engineering. Bell Syst Tech J 34(1):105–128. doi:10.1002/j.1538-7305.1955.tb03765.x

    Article  Google Scholar 

  21. Smits FM (1958) Measurement of sheet resistivities with the four-point probe. Bell Syst Tech J 37(3):711–718. doi:10.1002/j.1538-7305.1958.tb03883.x

    Article  Google Scholar 

  22. Fultz B, Howe J (2012) Transmission electron microscopy and diffractometry of materials. Springer, New York

    Google Scholar 

  23. Cifre J, Bertomeu J, Puigdollers J, Polo M, Andreu J, Lloret A (1994) Polycrystalline silicon films obtained by hot-wire chemical vapour deposition. Appl Phys A 59(6):645–651

    Article  Google Scholar 

  24. Jaccodine RJ (1963) Surface energy of germanium and silicon. J Electrochem Soc 110(6):524–527. doi:10.1149/1.2425806

    Article  Google Scholar 

  25. Schierning G, Theissmann R, Wiggers H, Sudfeld D, Ebbers A, Franke D, Witusiewicz VT, Apel M (2008) Microcrystalline silicon formation by silicon nanoparticles. J Appl Phys 103(8):084305. doi:10.1063/1.2903908

    Article  Google Scholar 

  26. Aspnes D, Studna A, Kinsbron E (1984) Dielectric properties of heavily doped crystalline and amorphous silicon from 1.5 to 6.0 eV. Phys Rev B 29(2):768

    Article  Google Scholar 

  27. Jellison GE Jr (1992) Optical functions of silicon determined by two-channel polarization modulation ellipsometry. Opt Mater 1(1):41–47. doi:10.1016/0925-3467(92)90015-F

    Article  Google Scholar 

  28. Palik ED (1998) Handbook of optical constants of solids, vol 3. Academic press, San Diego

    Google Scholar 

  29. Contarini S, Howlett SP, Rizzo C, De Angelis BA (1991) XPS study on the dispersion of carbon additives in silicon carbide powders. Appl Surf Sci 51(3–4):177–183. doi:10.1016/0169-4332(91)90400-E

    Article  Google Scholar 

  30. Kusunoki I, Igari Y (1992) XPS study of a SiC film produced on Si(100) by reaction with a C2H2 beam. Appl Surf Sci 59(2):95–104. doi:10.1016/0169-4332(92)90293-7

    Article  Google Scholar 

  31. Kishino S, Matsushita Y, Kanamori M (1979) Carbon and oxygen role for thermally induced microdefect formation in silicon crystals. Appl Phys Lett 35(3):213–215. doi:10.1063/1.91098

    Article  Google Scholar 

  32. Serway RA (1998) Principles of Physics. Fort Worth, Texas; London: Saunders College Publisher. ISBN 0-03-020457-7

  33. Lu N, Gerzberg L, Meindl J (1980) Corrections to “A quantitative model of the effect of grain size on the resistivity of polycrystalline silicon resistors”. Electron Device Lett 1(9):185

    Article  Google Scholar 

  34. Tyagi BP, Sen K (1983) On the resistivity of polycrystalline silicon. Phys Status Solidia 80(2):679–684. doi:10.1002/pssa.2210800233

    Article  Google Scholar 

  35. Seto JYW (1975) The electrical properties of polycrystalline silicon films. J Appl Phys 46(12):5247–5254. doi:10.1063/1.321593

    Article  Google Scholar 

  36. Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley, New York

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank the Joint Solar Silicon company for providing the raw material of silicon nanoparticles as well as the Dresden Thin Film Technology GmbH for the development of an individually customized flash lamp annealing system. Dr. Andreas Liebig is thanked for PXRD measurements. The authors acknowledge the financial support by the Bundesministerium für Bildung und Forschung (BMBF) (FKZ: 13N11081), the Staatsministerium für Wissenschaft und Kunst (SMWK, Saxonian Ministry for Science and Art), and the Fonds der Chemischen Industrie.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mehring.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Büchter, B., Seidel, F., Fritzsche, R. et al. Polycrystalline silicon foils by flash lamp annealing of spray-coated silicon nanoparticle dispersions. J Mater Sci 50, 6050–6059 (2015). https://doi.org/10.1007/s10853-015-9154-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9154-2

Keywords

Navigation