Skip to main content
Log in

Ultrasonic spray coating and flash lamp annealing of silicon nanoparticle dispersions for silicon thin film formation

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ultrasonic spray coating is reported as a deposition method for thin silicon films using a mixture of silicon nanoparticles and organosilicon compounds. The as-deposited films were treated by flash lamp annealing (FLA) using xenon light in order to obtain polycrystalline silicon. The nanoparticles were characterized by diffuse reflection infrared Fourier transform spectroscopy, transmission electron microscopy, and powder X-ray diffraction prior to deposition and film formation. The effect of FLA on the morphology of silicon films obtained from these silicon nanoparticles is investigated. Thin polycrystalline films up to 4 µm with a silicon content up to 95 % were prepared by combining the use of ultrasonic spray coating and FLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Research National Center for Photovoltaics, Renewable Energy Laboratory, http://www.nrel.gov/ncpv/. Accessed 5 December 2013

  2. Haynes WM (2012) CRC Handbook of chemistry and physics, 93rd edn. Taylor Francis, Bacon Raton

    Google Scholar 

  3. Bloem JJ, Claassen WAP (1980) Rate-determining reactions and surface species in CVD of silicon: I. The SiH4-HCl-H2 system. J Cryst Growth 49(3):435–444. doi:10.1016/0022-0248(80)90117-7

    Article  Google Scholar 

  4. Qiu Y, Griffith JE, Meng WJ, Tombrello TA (1983) Sputtering of silicon and its compounds in the electronic stopping region. Radiation Effects 70(1–4):231–236. doi:10.1080/00337578308219218

    Article  Google Scholar 

  5. Seidel F, Toader IG, Koth S, Fritzsche R, Schäfer P, Bülz D, Büchter B, Gordan OD, Freitag H, Jakob A, Buschbeck R, Hietschold M, Lang H, Mehring M, Baumann R, Zahn DRT (2014) Flash lamp annealing of spray coated films containing oxidized or hydrogen terminated silicon nanoparticles. Thin Solid Films 562:282–290. doi:10.1016/j.tsf.2014.04.081

    Article  Google Scholar 

  6. Leu J-T, Chen L-J, Lu L-R (1982) The recrystalization of BF2+-implanted silicon by light-flash annealing. Solid-State Electron 25(7):559–563. doi:10.1016/0038-1101(82)90056-9

    Article  Google Scholar 

  7. Pécz B, Dobos L, Panknin D, Skorupa W, Lioutas C, Vouroutzis N (2005) Crystallization of amorphous-Si films by flash lamp annealing. Appl Surf Sci 242(1–2):185–191. doi:10.1016/j.apsusc.2004.08.015

    Article  Google Scholar 

  8. McMahon RA, Smith MP, Seffen KA, Voelskow M, Anwand W, Skorupa W (2007) Flash-lamp annealing of semiconductor materials: applications and process models. Vacuum 81(10):1301–1305. doi:10.1016/j.vacuum.2007.01.033

    Article  Google Scholar 

  9. Kim D-H, Kim B-K, Kim HJ, Park S (2012) Crystallization of amorphous silicon thin-film on glass substrate preheated at 650 °C using Xe arc flash of 400 μs. Thin Solid Films 520(21):6581–6588. doi:10.1016/j.tsf.2012.07.006

    Article  Google Scholar 

  10. Prucnal S, Sun JM, Muecklich A, Skorupa W (2007) Flash lamp annealing vs rapid thermal and furnace anealing for optimized metal-oxide-silicon-based light-emitting diodes. electrochem Solid-State Lett 10(2):H50–H52. doi:10.1149/1.2404225

    Article  Google Scholar 

  11. Skorupa W, Gebel T, Yankov RA, Paul S, Lerch W, Downey DF, Arevalo EA (2005) Advanced thermal processing of ultrashallow implanted junctions using flash lamp annealing. J Electrochem Soc 152(6):G436–G440. doi:10.1149/1.1899268

    Article  Google Scholar 

  12. Fritzsche R, Seidel F, Rüffer T, Buschbeck R, Jakob A, Freitag H, Zahn DRT, Lang H, Mehring M (2014) New organosilanes based on N-methylpyrrole – Synthesis, structure and characterization. J Organomet Chem 755:86–92. doi:10.1016/j.jorganchem.2014.01.009

    Article  Google Scholar 

  13. Gilman H, Tomasi RA (1959) An allyl displacement of a benzyl group from Di- and tribenzylsilane. J Am Chem Soc 81(1):137–139. doi:10.1021/ja01510a031

    Article  Google Scholar 

  14. Riedmiller F, Jockisch A, Schmidbaur H (1999) Studies of silylfurans, furylsilanes, and silylthiophenes: structure of 2,5-disilylthiophene. Organometallics 18(15):2760–2765. doi:10.1021/om9901628

    Article  Google Scholar 

  15. Woo HG, Walzer JF, Tilley TD (1991) Dehydropolymerization of bis- and tris(silyl)arenes to highly crosslinked disilanylenearylene polymers, catalyzed by [(.eta.5-C5H5)(.eta.5-C5Me5)ZrH2]2. Macromolecules 24(26):6863–6866. doi:10.1021/ma00026a013

    Article  Google Scholar 

  16. Dykhuizen RC, Smith MF (1998) Gas dynamic principles of cold spray. J Therm Spray Tech 7(2):205–212. doi:10.1361/105996398770350945

    Article  Google Scholar 

  17. Engle RW (2012) Ultrasonic Suspension Delivery System. US Patent 0241,478, 27 sep 2012

  18. Rajan R, Pandit AB (2001) Correlations to predict droplet size in ultrasonic atomisation. Ultrasonics 39(4):235–255. doi:10.1016/S0041-624X(01)00054-3

    Article  Google Scholar 

  19. Eickhoff T, Grosse P, Theiss W (1990) Diffuse reflectance spectroscopy of powders. Vib Spectrosc 1(2):229–233. doi:10.1016/0924-2031(90)80042-3

    Article  Google Scholar 

  20. Scherrer P (1918) Nachrichten von der Königlichen Gesellschaft der Wissenschaft zu Göttingen. Nachr Ges Wiss Göttingen 2:98

    Google Scholar 

  21. Guinier A (1994) X-ray diffraction: in crystals, imperfect crystals, and amorphous bodies. Courier Dover Publications, Mineola

    Google Scholar 

  22. ICDD database entry 00-027-1402 in PDF-2 (2011) International Center for Diffraction Data, Newtown Square, PA, USA

  23. Kubelka P, Munk F (1931) Reflection characteristics of paints. Zeitschrift für Technische Physik 12:593

    Google Scholar 

  24. Cui CX, Kertesz M (1992) Assignment of the vibrational spectra of polysilane and its oligomers. Macromolecules 25(3):1103–1108. doi:10.1021/ma00029a015

    Article  Google Scholar 

  25. Perry CC, Li X, Waters DN (1991) Structural studies of gel phases—IV. An infrared reflectance and Fourier transform Raman study of silica and silica/titania gel glasses. Spectrochim Acta, A 47(9–10):1487–1494. doi:10.1016/0584-8539(91)80240-J

    Article  Google Scholar 

  26. Im JS, Kim HJ, Thompson MO (1993) Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films. Appl Phys Lett 63(14):1969–1971. doi:10.1063/1.110617

    Article  Google Scholar 

Download references

Acknowledgements

The Bundesministerium für Bildung und Forschung (BMBF) (FKZ: 13N11081), the Staatsministerium für Wissenschaft und Kunst (SMWK, Saxonian Ministry for Science and Art), and the Fonds der Chemischen Industrie is acknowledged for financial support. The authors thank the Joint Solar Silicon company for providing the raw material of silicon nanoparticles as well as the Dresden Thin Film Technology GmbH for the development of an individually customized flash lamp annealing system. Dr. Andreas Liebig is acknowledged for PXRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Mehring.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Büchter, B., Seidel, F., Fritzsche, R. et al. Ultrasonic spray coating and flash lamp annealing of silicon nanoparticle dispersions for silicon thin film formation. J Mater Sci 49, 7979–7990 (2014). https://doi.org/10.1007/s10853-014-8505-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8505-8

Keywords

Navigation