Skip to main content
Log in

Effect of surfactant and radiation treatment on the morphology and properties of PP/EG composites

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of surfactant and electron beam (EB) radiation treatment on the morphology and properties of polypropylene (PP)/expanded graphite (EG) composites were investigated. Surfactant treatment and sonication of EG before mixing with PP significantly influenced the morphologies of the composites, and the modification of EG with sodium dodecyl sulphate (SDS) had a strong negative influence on the electrical conductivities of these composites. The electrical percolation concentration is shifted from 5 to 6 wt% filler to about 10 wt% filler in the presence of SDS. The melting and crystallization temperatures of PP in the composites were not affected by surfactant or EB radiation treatment. There were small differences in PP crystallinity, depending on the type and combination of treatments. The filler particles acted as nucleating agents and the crystallization temperatures shifted to higher temperatures. The thermal stability of PP was significantly higher after irradiation, and improved even further for the samples containing EG, but the presence of EG had little influence on the thermal stabilities of the non-irradiated composites. For both non-irradiated and irradiated composites the maximum tensile stress and elongation at break values are lower than the neat matrix, while the tensile modulus increased significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kalaitzidou K, Fukushima H, Drzal LT (2007) Mechanical properties and morphological characterization of exfoliated graphite-polypropylene nanocomposites. Composites A 38:1675–1682. doi:10.1016/j.compositesa.2007.02.003

    Article  Google Scholar 

  2. Ranjbar M, Arefazar A, Bakhshandeh G (2013) Constituting balance between strength and toughness in nanocomposites based on PP/SEBS-g-MA blends. J Thermoplast Compos Mater 2:1–8. doi:10.1177/0892705712475001

    Google Scholar 

  3. Prashantha K, Lacrampe MF, Krawczak P (2011) Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties. eXPRESS Polymer Lett 5:295–307. doi:10.3144/expresspolymlett.2011.30

    Article  Google Scholar 

  4. Kalaitzidou K, Fukushima H, Askeland P, Drzal LT (2008) The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites. J Mater Sci 43:2895–2907. doi:10.1007/s10853-007-1876-3

    Article  Google Scholar 

  5. Prashantha K, Soulestin J, Lacrampe MF, Claes M, Dupin G, Krawczak P (2008) Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: Improvement of dispersion and mechanical properties through PP-g-MA addition. eXPRESS. Polymer Lett 2:735–745. doi:10.3144/expresspolymlett.2008.87

    Article  Google Scholar 

  6. Kashiwagi T, Grulke E, Hilding J, Groth K, Harris R, Butler K, Shields J, Kharchenko S, Douglas J (2004) Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer 45:4227–4239. doi:10.1016/j.polymer.2004.03.088

    Article  Google Scholar 

  7. Bikiaris D (2010) Microstructure and properties of polypropylene/carbon nanotube nanocomposites. Materials 3:2884–2946. doi:10.3390/ma3042884

    Article  Google Scholar 

  8. Huegun A, Fernández M, Mun̄oz ME, Santamaría A (2012) Rheological properties and electrical conductivity of irradiated MWCNT/PP nanocomposites. Compos Sci Technol 72:1602–1607. doi:10.1016/j.compscitech.2012.06.011

    Article  Google Scholar 

  9. Ma J, Deng H, Peijs T (2010) Processing of poly(propylene)/carbon nanotubes composites using scCO2-assisted mixing. Macromol Mater Eng 295:566–574. doi:10.1002/mame.200900405

    Article  Google Scholar 

  10. Afanasov IM, Savchenko DV, Ionov SG, Rusakov DA, Seleznev AN, Avdeev VV (2009) Thermal conductivity and mechanical properties of expanded graphite. Inorg Mater 45:486–490. doi:10.1134/S0020168509050057

    Article  Google Scholar 

  11. Ramimoghadam D, Hussein MZB, Taufiq-Yap YH (2012) The effect of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) on the properties of ZnO synthesized by hydrothermal method. Int J Mol Sci 13:1327–13293. doi:10.3390/ijms131013275

    Article  Google Scholar 

  12. Güngör N, Alemdar A, Atici O, Ece IO (2001) The effect of SDS surfactant on the flow and zeta potential of bentonite suspensions. Mater Lett 51:250–254

    Article  Google Scholar 

  13. Costache MC, Heidecker M, Manias E, Gupta R, Wilkie C (2007) Benzimidazolium surfactants for modification of clays for use with styrenic polymers. Polymer Degrad Stab 92:1–23. doi:10.1016/j.polymdegradstab.2007.08.001

    Article  Google Scholar 

  14. Lee K-Y, Kim K-Y (2008) 60Co γ-ray irradiation effect and degradation behaviours of a carbon nanotubes and poly(ethylene-co-vinyl acetate) nanocomposites. Polymer Degrad Stab 93:1290–1299. doi:10.1016/j.polymdegrastab.2008.04.007

    Article  Google Scholar 

  15. Martínez-Morlanes MJ, Castell P, Alonso PJ, Martinez MT, Puértolas JA (2012) Multi-walled carbon nanotubes acting as free radical scavengers in gamma-irradiated ultrahigh molecular weight polyethylene composites. Carbon 50:2442–2452. doi:10.1016/j.carbon.2012.01.066

    Article  Google Scholar 

  16. Hwang TY, Lee S, Kang P-H, Park KH, Ahn Y, Lee JW (2011) The effect of electron beam irradiation on the dispersion and properties of poly(ethylene-co-vinyl acetate)/clay nanocomposites. Macromol Res 19:1151–1156. doi:10.1007/s13233-011-1104-5

    Article  Google Scholar 

  17. Khodkar F, Ebrahimi NG (2011) Effect of irradiation on mechanical and structural properties of ethylene vinyl acetate copolymers hollow fibres. J Appl Polymer Sci 119:2085–2092. doi:10.1002/app.32926

    Article  Google Scholar 

  18. Kalaitzidon K, Fukushima H, Drzal LT (2007) A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties lower percolation threshold. Compos Sci Technol 67:2045–2051. doi:10.1016/j.compscitech.2006.11.014

    Article  Google Scholar 

  19. Kalaitzidon K, Fukushima H, Drzal LT (2007) A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties lower percolation threshold. Compos Sci Technol 67:2045–2051. doi:10.1016/j.compscitech.2006.11.014

    Article  Google Scholar 

  20. Quan H, Zhang B-Q, Zhao Q, Yuen RKK, Li RKY (2009) Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Composites A 40:1506–1513. doi:10.1016/j.compositesa.2009.06.012

    Article  Google Scholar 

  21. Cheng S, Chen X, Hsuan YG, Li CY (2012) Reduced graphene oxide-induced polyethylene crystallization in solution and nanocomposites. Macromolecules 45:993–1000. doi:10.1021/ma201214531

    Article  Google Scholar 

  22. Bose S, Kulia T, Uddin ME, Kim NH, Lau AKT, Lee JH (2010) In situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer 51:5921–5928. doi:10.1016/j.polymer.2010.10.014

    Article  Google Scholar 

  23. Yuan XY, Zou LL, Liao CC, Dai JW (2012) Improved properties of chemically modified graphene/poly(methyl methacrylate) nanocomposites via a facile in situ bulk polymerization. eXPRESS. Polymer Lett 6:847–858. doi:10.3144/expresspolymlett.2012.90

    Article  Google Scholar 

  24. Wunderlich B (1990) Thermal analysis. Academic Press, New York

    Google Scholar 

  25. Galeski A (1999) Polypropylene: An A-Z reference series. Polymer science and technology series vol. 2, J. Karger-Kocsis (Ed.). ISBN: 978-94-011-4421-6

  26. Causin V, Marega C, Marigo A, Ferrara G, Ferraro A (2006) Morphological and structural characterization of polypropylene/conductive graphite nanocomposites. Eur Polymer J 42:3153–3161. doi:10.1016/j.europolymj.2006.08.017

    Article  Google Scholar 

  27. Wang Y, Tsai H-B (2012) Thermal, dynamic-mechanical and dielectric properties of surfactant intercalated graphite oxide filled maleated polypropylene nanocomposites. J Appl Polym Sci 123:3154–3163. doi:10.1002/app.34976

    Article  Google Scholar 

  28. Zhang Y-Q, Lee J-H, Rhee JM, Rhee KY (2004) Polypropylene-clay nanocomposites prepared by in situ grafting-intercalating in melt. Compos Sci Technol 64:1383–1389. doi:10.1016/j.compscitech.2003.10.014

    Article  Google Scholar 

  29. Piana F, Pionteck J (2013) Effect of the melt processing conditions on the conductive paths formation in thermoplastic polyurethane/expanded graphite (TPU/EG). Compos Sci Technol 80:39–46. doi:10.1016/j.compscitech.2013.03.002

    Article  Google Scholar 

  30. S.V.J. Canevarolo (Ed.) (2003) Techniques for polymer characterization. Ed Artliber, Sáo Paulo

  31. Huo H, Jiang S, An L (2004) Influence of shear on crystallization behaviour of the β phase in isotactic polypropylene with β-nucleating agent. Macromolecules 37:2478–2483. doi:10.1021/ma0358531

    Article  Google Scholar 

  32. Sefadi JS, Luyt AS, Pionteck J (2015) Effect of surfactant on EG dispersion in EVA and thermal and mechanical properties of the system. J Appl Polym Sci 132:41352. doi:10.1002/app.41352

    Google Scholar 

  33. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204. doi:10.1016/j.polymer.2008.04.017

    Article  Google Scholar 

  34. Huang R, Xu X, Lee S, Zhang Y, Kim B-J, Wu Q (2013) High density polyethylene composites reinforced with hybrid inorganic fillers: morphology, mechanical and thermal expansion performance. Materials 6:4122–4138. doi:10.3390/ma6094122

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Research Foundation of South Africa (UID 73982) and the International Bureau of the BMBF in Germany (project SUA 10/009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Luyt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sefadi, J.S., Luyt, A.S., Pionteck, J. et al. Effect of surfactant and radiation treatment on the morphology and properties of PP/EG composites. J Mater Sci 50, 6021–6031 (2015). https://doi.org/10.1007/s10853-015-9149-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9149-z

Keywords

Navigation