Skip to main content
Log in

Nonequivalent-F-induced relaxations in LaF3 single crystals over a broad temperature range

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dielectric properties of LaF3 single crystals were investigated in the temperature range from 110 to 773 K and the frequency range from 100 Hz to 10 MHz. Two thermally activated relaxations (R1 and R2) and a dielectric anomaly (A) were observed. The lower temperature relaxation (R1) was ascribed to a polaronic relaxations due to fluorine ions diffusion within the F1 sublattice and fluorine ions hopping in F1 sublattice. The higher temperature relaxation (R2) is Maxwell–Wagner relaxation due to the blocking of electrodes associated with the ionic exchange between F1 and F2,3 sublattices and among the three nonequivalent sublattices. The anomaly appearing in the highest temperature range is related to the inductive effect arising from the coupled electron-ionic inductive response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yusuke T, Kinichi M (2002) Hetero-epitaxial growth and optical properties of LaF3 on CaF2. Thin Solid Films 420–421:30–37

    Google Scholar 

  2. Lilly AC, LaRoy BC, Tiller CO, Whiting B (1973) Transport properties of LaF3 thin films. J Electrochem Soc 120(12):1673–1676

    Article  Google Scholar 

  3. Szeponik J, Moritz W (1990) A new structure for chemical sensor devices. Sens Actuators B 2(4):243–246

    Article  Google Scholar 

  4. Moritz W, Müller L (1991) Mechanistic study of fluoride ion sensors. Analyst 116:589–593

    Article  Google Scholar 

  5. Komljenovic J, Krka S, Radic N (1986) All-solid-state fluoride electrode. Anal Chem 58(13):2893–2895

    Article  Google Scholar 

  6. Waynant RW, Klein PH (1985) Vacuum ultraviolet laser emission from Nd+3: LaF3. Appl Phys Lett 46(1):14–16

    Article  Google Scholar 

  7. Ehrlich DJ, Moulton PF, Osgood RM (1980) Optically pumped Ce: LaF3 laser at 286 nm. Opt Lett 5(8):339–341

    Article  Google Scholar 

  8. Zalkin A, Templeton DH (1985) Refinement of the trigonal crystal structure of lanthanum trifluoride with neutron diffraction data. Acta Crystallogr Sect B 41(2):91–93

    Article  Google Scholar 

  9. Maximov B, Schulz H (1985) Space group, crystal structure and twinning of lanthanum trifluoride. Acta Crystallogr Sect B 41(2):88–91

    Article  Google Scholar 

  10. Rhandour A, Reau JM, Matar SF, Tian SB, Hagenmuller P (1985) New fluorine ion conductors with tysonite-type structure. Mater Res Bull 20(11):1309–1327

    Article  Google Scholar 

  11. Privalov AF, Vieth HM, Murin IV (1994) Nuclear magnetic resonance study of superionic conductors with tysonite structure. J Phys 6(40):8237–8243

    Google Scholar 

  12. Privalov AF, Lips O, Fujara F (2002) Dynamic processes in the superionic conductor LaF3 at high temperatures as studied by spin-lattice relaxation dispersion. J Phys 14(17):4515–4525

    Google Scholar 

  13. Blaha P, Singh D, Sorantin PI, Schwarz K (1992) Resistivity anomaly during the process of separation of phases of a binary alloy. Phys Rev B 46(4):1321–1325

    Article  Google Scholar 

  14. Chadwick AV, Hope DS, Jaroszkiewicz G, Strange JH (1979) NMR and conductivity studies of ionic transport in LaF3. In: Vashishta P, Mundy JN, Shenoy GK (eds) Fast ion transport in solids. Elsevier, Amsterdam, pp 683–686

    Google Scholar 

  15. Krivorotov VF, Nuzhdov GS, Fridman AA, Charnaya EV (2013) Quantum chemical calculations of intracell potential profile in superionic transition range in LaF3. Russ J Electrochem 49(12):1154–1159

    Article  Google Scholar 

  16. Ngoepe PE, Jordan WM, Catlow CRA, Comins JD (1990) Computer modeling and Brillouin scattering studies of anharmonicity and high-temperature disorder in LaF3. Phys Rev B 41(6):3815–3823

    Article  Google Scholar 

  17. Sher A, Solomon R, Lee K, Muller MW (1966) Transport Properties of LaF3. Phys Rev 144:593–604

    Article  Google Scholar 

  18. Frölich H (1958) Theory of dielectrics: dielectric constant and dielectric loss. Clarendon, Oxford, p 70

    Google Scholar 

  19. Iguchi E, Ueda K, Jung WH (1996) Conduction in LaCoO3 by small-polaron hopping below room temperature. Phys Rev B 54(24):17431–17437

    Article  Google Scholar 

  20. Nobre MAL, Lanfred S (2003) Grain boundary electric characterization of Zn7Sb2O12 semiconducting ceramic: a negative temperature coefficient thermistor. J Appl Phys 93(9):5576–5582

    Article  Google Scholar 

  21. Li W, Schwartz RW (2007) Maxwell-Wagner relaxations and their contributions to the high permittivity of calcium copper titanate ceramics. Phys Rev B 75(1):012104

    Article  Google Scholar 

  22. Nobre MAL, Lanfredi S (2000) Impedance spectroscopy analysis of high-temperature phase transitions in sodium lithium niobate ceramics. J Phys Condens Mater 12(35):7833–7841

    Article  Google Scholar 

  23. Cao WQ, Gerhsrdt R (1990) Calculation of various relaxation times and conductivity for a single dielectric relaxation. Solid State Ion 42(3–4):213–221

    Article  Google Scholar 

  24. Wang CC, Lei CM, Wang GJ, Sun XH, Li T, Huang SG, Wang H, Li YD (2013) Oxygen-vacancy-related dielectric relaxations in SrTiO3 at high temperatures. J Appl Phys 113(9):094103

    Article  Google Scholar 

  25. Wang CC, Zhang MN, Xia W (2013) High-temperature dielectric relaxation in Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. J Am Ceram Soc 96(5):1521–1525

    Article  Google Scholar 

  26. Sinclair DC, West AR (1989) Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J Appl Phys 66(8):3850–3856

    Article  Google Scholar 

  27. Greenlee JD, Calley WL, Moseley MW, Doolittle WA (2013) Comparison of interfacial and bulk ionic motion in analog memristors. IEEE Trans Electron Devices 60(1):427–432

    Article  Google Scholar 

Download references

Acknowledgments

We thank financial support from the National Natural Science Foundation of China (Grant No. 11074001) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars from the State Education Ministry. This work was supported in part by the open research fund of key laboratory of MEMS of Ministry of Education, Southeast University of China, and the Doctoral Startup Foundation of Anhui University (Grant No. 33190077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunchang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, C., Sun, X. et al. Nonequivalent-F-induced relaxations in LaF3 single crystals over a broad temperature range. J Mater Sci 50, 3795–3802 (2015). https://doi.org/10.1007/s10853-015-8944-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8944-x

Keywords

Navigation