Skip to main content
Log in

Spontaneous Magnetodielectric Effect and Its Coupling to the Lattice Dynamics in Fluoroperovskites

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Experimental results on temperature dependences of the low-frequency dielectric permittivity of the group of magnetic fluoroperovskites with different crystal and magnetic structures are presented. Orthorhombic NaCoF3 and NaNiF3, cubic RbFeF3, hexagonal RbNiF3 and tetragonal K2CoF4 and K2NiF4 were investigated. The analysis of experimental results in combination with those of our previous studies of other fluoroperovskites was carried out taking into account the influence of the spontaneous magnetodielectric effect on lattice dynamics. It revealed the role of the spin-phonon coupling and the anharmonic contribution, which leads an increase of dielectric permittivity at heating, and contribution of the hidden structural instability manifested as an increase of the dielectric permittivity at cooling. It was established that the relative contributions of these three main mechanisms to the temperature dependence of dielectric permittivity are significantly different in all fluoroperovskites under study but they are well correlated with the tolerance factor t, which characterizes a relation between ionic radii and is a measure of stability of AMF3 perovskite crystal structure. The obtained results and their analysis reliably demonstrate that the low-frequency dielectric spectroscopy is a highly sensitive method to study particular features of the lattice dynamics of fluoroperovskites at magnetic and structural phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. G. A. Smolenskii and I. E. Chupis, Sov. Phys. Usp. 25, 475 (1982).

    ADS  Google Scholar 

  2. M. Fiebig, J. Phys. D 38, R123 (2005).

    ADS  Google Scholar 

  3. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London, U.K.) 442, 759 (2006).

    ADS  Google Scholar 

  4. H. Schmid, J. Phys.: Condens. Matter 20, 434201 (2008).

    ADS  Google Scholar 

  5. K. F. Wang, J.-M. Liu, and Z. F. Ren, Adv. Phys. 58, 321 (2009).

    ADS  Google Scholar 

  6. N. A. Spaldin, S.-W. Cheong, and R. Ramesh, Phys. Today 63, 38 (2010).

    Google Scholar 

  7. A. P. Pyatakov and A. K. Zvezdin, Phys. Usp. 55, 557 (2012).

    ADS  Google Scholar 

  8. Y. Tokura, S. Seki, and N. Nagaosa, Rep. Prog. Phys. 77, 076501 (2014).

    ADS  Google Scholar 

  9. S. Dong, J.-M. Liu, S.-W. Cheong, et al., Adv. Phys. 64, 519 (2015).

    ADS  Google Scholar 

  10. M. Fiebig, T. Lottermoser, D. Meier, et al., Nat. Rev. Mater. 1, 16046 (2016).

    ADS  Google Scholar 

  11. A. V. Kimel, A. M. Kalashnikova, A. Pogrebna, et al., Phys. Rep. 852, 1 (2020).

    ADS  Google Scholar 

  12. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

  13. I. E. Dzyaloshinskii, Sov. Phys. JETP 10, 628 (1959).

    MathSciNet  Google Scholar 

  14. D. N. Astrov, Sov. Phys. JETP 13, 729 (1961).

    Google Scholar 

  15. R. R. Birss, Symmetry and Magnetism (North-Holland, Amsterdam, 1964).

    MATH  Google Scholar 

  16. I. E. Dzyaloshinskii, Sov. Phys. JETP 6, 621 (1957).

    ADS  Google Scholar 

  17. A. S. Borovik-Romanov, Sov. Phys. JETP 11, 786 (1960).

    Google Scholar 

  18. A. S. Borovik-Romanov, Ferroelectrics 162, 153 (1994).

    Google Scholar 

  19. S. V. Gallego, J. Etxebarria, L. Elcoro, et al., Acta Crystallogr., Sect. A 75, 438 (2019).

    MathSciNet  Google Scholar 

  20. P. A. Markovin, R. V. Pisarev, G. A. Smolensky, et al., Solid State Commun. 19, 185 (1976).

    ADS  Google Scholar 

  21. I. R. Jahn and K. Bittermann, Solid State Comm. 13, 1897 (1973).

    ADS  Google Scholar 

  22. P. A. Markovin and R. V. Pisarev, Sov. Phys. JETP 50, 1190 (1979).

    ADS  Google Scholar 

  23. A. S. Borovik-Romanov, N. M. Kreines, and Ya. Paches, Sov. Phys. JETP 50, 1198 (1979).

    ADS  Google Scholar 

  24. G. A. Smolenskii, R. V. Pisarev, and I. G. Sinii, Sov. Phys. Usp. 18, 410 (1975).

    ADS  Google Scholar 

  25. J. Ferré and G. A. Gehring, Rep. Prog. Phys. 47, 513 (1984).

    ADS  Google Scholar 

  26. R. M. Dubrovin, S. A. Kizhaev, P. P. Syrnikov, et al., Phys. Rev. B 98, 060403(R) (2018).

  27. R. M. Dubrovin, N. V. Siverin, P. P. Syrnikov, et al., Phys. Rev. B 100, 024429 (2019).

    ADS  Google Scholar 

  28. F. Gervais and B. Piriou, J. Phys. C 7, 2374 (1974).

    ADS  Google Scholar 

  29. F. Gervais and H. Arend, Z. Phys. B 50, 17 (1983).

    ADS  Google Scholar 

  30. M. Balkanski, R. F. Wallis, and E. Haro, Phys. Rev. B 28, 1928 (1983).

    ADS  Google Scholar 

  31. T. Lan, X. Tang, and B. Fultz, Phys. Rev. B 85, 094305 (2012).

    ADS  Google Scholar 

  32. D. L. Fox, D. R. Tilley, J. F. Scott, et al., Phys. Rev. B 21, 2926 (1980).

    ADS  Google Scholar 

  33. R. P. Lowndes and D. H. Martin, Proc. R. Soc. London, Ser. A 316, 351 (1970).

    ADS  Google Scholar 

  34. R. A. Bartels and P. A. Smith, Phys. Rev. B 7, 3885 (1973).

    ADS  Google Scholar 

  35. M. Wintersgill, J. Fontanella, C. Andeen, et al., J. Appl. Phys. 50, 8259 (1979).

    ADS  Google Scholar 

  36. J. K. Vassiliou, J. Appl. Phys. 59, 1125 (1986).

    ADS  Google Scholar 

  37. M. S. Seehra and R. E. Helmick, Phys. Rev. B 24, 5098 (1981).

    ADS  Google Scholar 

  38. M. S. Seehra and R. E. Helmick, J. Appl. Phys. 55, 2330 (1984).

    ADS  Google Scholar 

  39. M. S. Seehra, R. E. Helmick, and G. Srinivasan, J. Phys. C 19, 1627 (1986).

    ADS  Google Scholar 

  40. K. A. Müller and H. Burkard, Phys. Rev. B 19, 3593 (1979).

    ADS  Google Scholar 

  41. V. V. Lemanov, A. V. Sotnikov, E. P. Smirnova, et al., Solid State Commun. 110, 611 (1999).

    ADS  Google Scholar 

  42. T. Katsufuji and H. Takagi, Phys. Rev. B 64, 054415 (2001).

    ADS  Google Scholar 

  43. J. H. Barrett, Phys. Rev. 86, 118 (1952).

    ADS  Google Scholar 

  44. I. Hatta and N. Sugimoto, J. Phys. Soc. Jpn. 49, 1000 (1980).

    ADS  Google Scholar 

  45. M. I. Darby, Br. J. Appl. Phys. 18, 1415 (1967).

    ADS  Google Scholar 

  46. R. Schleck, Y. Nahas, R. P. S. M. Lobo, et al., Phys. Rev. B 82, 054412 (2010).

    ADS  Google Scholar 

  47. M. Cottam and D. Lockwood, Low Temp. Phys. 45, 78 (2019).

    ADS  Google Scholar 

  48. G. Lawes, A. P. Ramirez, C. M. Varma, et al., Phys. Rev. Lett. 91, 257208 (2003).

    ADS  Google Scholar 

  49. T. Katsufuji, S. Mori, M. Masaki, et al., Phys. Rev. B 64, 104419 (2001).

    ADS  Google Scholar 

  50. N. Hur, S. Park, P. A. Sharma, et al., Phys. Rev. Lett. 93, 107207 (2004).

    ADS  Google Scholar 

  51. S. A. Kizhaev and L. A. Markova, Phys. Solid State 53, 1851 (2011).

    ADS  Google Scholar 

  52. T. Moriya, J. Phys. Chem. Solids 11, 73 (1959).

    ADS  Google Scholar 

  53. K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).

    Google Scholar 

  54. V. M. Goldschmidt, Naturwissenschaften 14, 477 (1926).

    ADS  Google Scholar 

  55. D. Babel, in Structure and Bonding, Ed. by C. K. Jorgensen, J. B. Neilands, R. S. Nyholm, D. Reinen, and R. J. P. Williams (Springer, Berlin, Heidelberg, 1967), Vol. 3, p. 1.

    Google Scholar 

  56. J. Kapusta, P. Daniel, and A. Ratuszna, Phys. Rev. B 59, 14235 (1999).

    ADS  Google Scholar 

  57. M. Hidaka, S. Maeda, and J. S. Storey, Phase Trans. 5, 219 (1985).

    Google Scholar 

  58. L. R. Testardi, H. J. Levinstein, and H. J. Guggenheim, Phys. Rev. Lett. 19, 503 (1967).

    ADS  Google Scholar 

  59. J. F. Scott and R. Blinc, J. Phys.: Condens. Matter 23, 113202 (2011).

    ADS  Google Scholar 

  60. E. H. Smith, N. A. Benedek, and C. J. Fennie, Inorg. Chem. 54, 8536 (2015).

    Google Scholar 

  61. P. Berastegui, S. Hull, and S. G. Eriksson, J. Phys.: Condens. Matter 13, 5077 (2001).

    ADS  Google Scholar 

  62. G. Roma, A. Marronnier, and J. Even, arXiv: cond-mat/2001.08908.

  63. A. C. Garcia-Castro, N. A. Spaldin, A. H. Romero, et al., Phys. Rev. B 89, 104107 (2014).

    ADS  Google Scholar 

  64. A. C. Garcia-Castro, A. H. Romero, and E. Bousquet, Phys. Rev. B 90, 064113 (2014).

    ADS  Google Scholar 

  65. C. Ridou, M. Rousseau, and F. Gervais, J. Phys. C 19, 5757 (1986).

    ADS  Google Scholar 

  66. H. Yusa, Y. Shirako, M. Akaogi, et al., Inorg. Chem. 51, 6559 (2012).

    Google Scholar 

  67. S. Ogawa, J. Phys. Soc. Jpn. 15, 2361 (1960).

    ADS  Google Scholar 

  68. A. M. Glazer, Acta Crystallogr., B 28, 3384 (1972).

    Google Scholar 

  69. A. Ratuszna, K. Majewska, and T. Lis, Acta Crystallogr., C 45, 548 (1989).

    Google Scholar 

  70. Z. Friedman, M. Melamud, J. Makovsky, et al., Phys. Rev. B 2, 179 (1970).

    ADS  Google Scholar 

  71. A. Epstein, J. Makovsky, M. Melamud, et al., Phys. Rev. 174, 560 (1968).

    ADS  Google Scholar 

  72. E. Bousquet and A. Cano, J. Phys.: Condens. Matter 28, 123001 (2016).

    Google Scholar 

  73. Y. Shirako, Y. G. Shi, A. Aimi, et al., J. Solid State Chem. 191, 167 (2012).

    ADS  Google Scholar 

  74. H. A. Brown-Acquaye and A. P. Lane, J. Inorg. Nucl. Chem. 43, 3143 (1981).

    Google Scholar 

  75. A. A. Karamyan, Phys. Status Solidi A 16, 419 (1973).

    ADS  Google Scholar 

  76. R. M. Dubrovin, L. N. Alyabyeva, N. V. Siverin, et al., Phys. Rev. B 101, 180403(R) (2020).

  77. M. Kestigian, F. D. Leipziger, W. J. Croft, et al., Inorg. Chem. 8, 1462 (1966).

    Google Scholar 

  78. F. F. Y. Wang, D. E. Cox, and M. Kestigian, Phys. Rev. B 3, 3946 (1971).

    ADS  Google Scholar 

  79. Y. Someya, A. Ito, and S. Morimoto, J. Phys. Soc. Jpn. 50, 1883 (1981).

    ADS  Google Scholar 

  80. Y. Someya and A. Ito, J. Phys. Soc. Jpn. 50, 1891 (1981).

    ADS  Google Scholar 

  81. A. Okazaki and Y. Suemune, J. Phys. Soc. Jpn. 16, 176 (1961).

    ADS  Google Scholar 

  82. V. W. Rüdorff, J. Känder, and D. Babel, Z. Anorg. Allgern. Chem. 317, 261 (1962).

    Google Scholar 

  83. J. E. Weidenborner and A. L. Bednowitz, Acta Crystallogr., B 26, 1464 (1970).

    Google Scholar 

  84. G. A. Smolenskii, V. M. Yudin, P. P. Syrnikov, et al., JETP Lett. 3, 271 (1966).

    ADS  Google Scholar 

  85. M. W. Shafer, T. R. McGuire, B. E. Argyle, et al., Appl. Phys. Lett. 10, 202 (1967).

    ADS  Google Scholar 

  86. J. Als-Nielsen, R. J. Birgeneau, and H. J. Guggenheim, Phys. Rev. B 6, 2030 (1972).

    ADS  Google Scholar 

  87. A. Zalkin, K. Lee, and D. H. Templeton, J. Chem. Phys. 37, 697 (1962).

    ADS  Google Scholar 

  88. Y. Yamaguchi and T. Sakuraba, J. Phys. Soc. Jpn. 38, 1011 (1975).

    ADS  Google Scholar 

  89. D. Babel and E. Herdtweck, Z. Anorg. Allg. Chem. 487, 75 (1982).

    Google Scholar 

  90. D. J. Breed, K. Gilijamse, and A. R. Miedema, Physica (Amsterdam, Neth.) 45, 205 (1969).

  91. R. J. Birgeneau, F. de Rosa, and H. J. Guggenheim, Solid State Commun. 8, 13 (1970).

    ADS  Google Scholar 

  92. F. L. Bernal, K. V. Yusenko, J. Sottmann, et al., Inorg. Chem. 53, 12205 (2014).

    Google Scholar 

  93. F. L. M. Bernal, J. Sottmann, D. S. Wragg, et al., Phys. Rev. Materials 4, 054412 (2020).

Download references

ACKNOWLEDGMENTS

We thank P.P. Syrnikov (Ioffe Institute, Russian Academy of Sciences) for supplying some fluoroperovskite single crystals for the investigations. We also studied the single crystals grown by S.V. Petrov (Kapitza Institute for Physical Problems, Russian Academy of Sciences).

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-02-00457.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Dubrovin.

Ethics declarations

This article was prepared for the special issue dedicated to the centenary of A.S. Borovik-Romanov.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovin, R.M., Pisarev, R.V. Spontaneous Magnetodielectric Effect and Its Coupling to the Lattice Dynamics in Fluoroperovskites. J. Exp. Theor. Phys. 131, 189–200 (2020). https://doi.org/10.1134/S1063776120070043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120070043

Navigation