Skip to main content
Log in

Enhancement of the tensile strength in poly(p-phenylene sulfide) and multi-walled carbon nanotube nanocomposites by hot-stretching

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The interfacial adhesion is a significant factor for improving mechanical properties of filler-reinforced polymer composites. In this work, the as-spun and hot-stretched poly(phenylene sulfide) (PPS) and multi-walled carbon nanotubes (MWCNTs) composite fibers were prepared. Tensile test showed that large enhancements in tensile strength and modulus were achieved in hot-stretched samples. The strong interfacial interaction leading to the effective load transferring was realized in hot-stretched composite fibers. Further analysis showed that the strong interfacial adhesion might be the result of the formation of π–π interaction between the benzene ring of PPS and the surface of MWCNTs with the help of hot-stretching, which could be the most important reason for the remarkable mechanical enhancement of the hot-stretched composite fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(5):6. doi:10.1038/354056a0

    Google Scholar 

  2. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787. doi:10.1126/science.1060928

    Article  Google Scholar 

  3. Costa P, Silva J, Sencadas V, Simoes R, Viana JC, Lanceros-Méndez S (2013) Mechanical, electrical and electro-mechanical properties of thermoplastic elastomer styrene–butadiene-styrene/multiwall carbon nanotubes composites. J Mater Sci 48:1172. doi:10.1007/s10853-012-6855-7

    Article  Google Scholar 

  4. Eitan A, Fisher FT, Andrews R, Brinson LC, Schadler LS (2006) Reinforcement mechanisms in MWCNT-filled polycarbonate. Compos Sci Technol 66:1162. doi:10.1016/j.compscitech.2005.10.004

    Article  Google Scholar 

  5. Meng H, Sui XG, Fang PF, Yang R (2008) Effects of acid- and diamine-modified MWNTs on the mechanical properties and crystallization behavior of polyamide. Polymer 49:610. doi:10.1016/j.polymer.2007.12.001

    Article  Google Scholar 

  6. Bai J (2003) Evidence of the reinforcement role of chemical vapour deposition multi-walled carbon nanotubes in a polymer matrix. Carbon 41:1325. doi:10.1016/S0008-6223(03)00034-4

    Article  Google Scholar 

  7. Chen GX, Kim SH, Park BH, Yoon JS (2006) Multi-walled carbon nanotubes reinforced nylon 6 composites. Polymer 47:4760. doi:10.1016/j.polymer.2006.04.020

    Article  Google Scholar 

  8. Blake R, Gun’ko YK, Coleman J, Cadek M, Fonseca A, Nagy JB, Blau WJ (2004) A generic organometallic approach toward ultra-strong carbon nanotube polymer composites. J Am Chem Soc 126:10226. doi:10.1021/ja0474805

    Article  Google Scholar 

  9. Rangari VK, Yousuf M, Jeelani S, Khabashesku VN, Pulikkathara M (2008) Alignment of carbon nanotubes and reinforcing effects in nylon-6 polymer composite fibers. Nanotechnology 19:245703. doi:10.1088/0957-4484/19/24/245703

    Article  Google Scholar 

  10. Moniruzzaman M, Chattopadhyay J, Billups WE, Winey KI (2007) Tuning the mechanical properties of SWNT/Nylon 6,10 composites with flexible spacers at the interface. Nano Lett 7:1178. doi:10.1021/nl062868e

    Article  Google Scholar 

  11. Barber AH, Cohen SR, Wagner HD (2003) Measurement of carbon nanotube–polymer interfacial strength. Appl Phys Lett 82:4140. doi:10.1063/1.1579568

    Article  Google Scholar 

  12. Yang JH, Wang CY, Wang K, Zhang Q, Chen F, Du RN, Fu Q (2009) Hierarchical structure of injection-molded bars of HDPE/MWCNTs composites with novel nanohybrid shish–kebab. Macromolecules 42:7016. doi:10.1021/ma901266u

    Article  Google Scholar 

  13. Logakis E, Pollatos E, Pandis C, Peoglos V, Zuburtikudis I, Delides CG, Vatalis A, Gjoka M, Syskakis E, Viras K, Pissis P (2010) Structure–property relationships in isotactic polypropylene/multi-walled carbon nanotubes nanocomposites. Compos Sci Technol 70:328. doi:10.1016/j.compscitech.2009.10.023

    Article  Google Scholar 

  14. Mai F, Wang K, Yao MJ, Deng H, Chen F, Fu Q (2010) Superior reinforcement in melt-spun polyethylene/multiwalled carbon nanotube fiber through formation of a shish–kebab structure. J Phys Chem B 114:10693. doi:10.1021/jp1019944

    Article  Google Scholar 

  15. Zhang SJ, Minus ML, Zhu LB, Wong CP, Kumar S (2008) Polymer transcrystallinity induced by carbon nanotubes. Polymer 49:1356–1364. doi:10.1016/j.polymer.2008.01.018

    Article  Google Scholar 

  16. Cadek M, Coleman JN, Barron V, Hedicke K, Blau W (2002) Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl Phys Lett 81:5123. doi:10.1063/1.1533118

    Article  Google Scholar 

  17. Coleman JN, Cadek M, Ryan KP, Fonseca A, Nagy JB, Blau WJ, Ferreira MS (2006) Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial region. Experiment and modeling. Polymer 47:8556. doi:10.1016/j.polymer.2006.10.014

    Article  Google Scholar 

  18. Coleman JN, Cadek M, Blake R, Nicolosi V, Ryan KP, Belton C, Fonseca A, Nagy JB, Gun’ko YK, Blau WJ (2004) High performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv Funct Mater 14:791. doi:10.1002/adfm.200305200

    Article  Google Scholar 

  19. Park HS, Choi BG, Hong WH, Jang SY (2012) Interfacial interactions of single-walled carbon nanotube/conjugated block copolymer hybrids for flexible transparent conductive films. J Phys Chem C 116:7962. doi:10.1021/jp209796f

    Article  Google Scholar 

  20. Zhang ZN, Zhang J, Chen P, Zhang BQ, He JS, Hu GH (2006) Enhanced interactions between multi-walled carbon nanotubes and polystyrene induced by melt mixing. Carbon 44:692. doi:10.1016/j.carbon.2005.09.027

    Article  Google Scholar 

  21. Shen B, Zhai WT, Chen C, Lu DD, Wang Jing, Zheng W (2011) Melt blending in situ enhances the interaction between polystyrene and graphene through π–π stacking. ACS Appl Mater Interfaces 3:3103. doi:10.1021/am200612z

    Article  Google Scholar 

  22. Zheng QB, Xue QZ, Yan KY, Hao LZ, Li Q, Gao XL (2007) Investigation of molecular interactions between SWNT and polyethylene/polypropylene/polystyrene/polyaniline molecules. J Phys Chem C 111:4628. doi:10.1021/jp066077c

    Article  Google Scholar 

  23. Hunter CA, Sanders JKM (1990) The nature of.pi.-.pi. interactions. J Am Chem Soc 112:5525. doi:10.1021/ja00170a016

    Article  Google Scholar 

  24. Grimme S (2008) Do special noncovalent π–π stacking interactions really exist? Angew Chem Int Ed 47:3430. doi:10.1002/anie.200705157

    Article  Google Scholar 

  25. Díez-Pascual AM, Naffakh M (2012) Towards the development of poly(phenylene sulphide) based nanocomposites with enhanced mechanical, electrical and tribological properties. Mater Chem Phys 135:348. doi:10.1016/j.matchemphys.2012.04.057

    Article  Google Scholar 

  26. Díez-Pascual AM, Naffakh M (2012) Grafting of an aminated poly(phenylene sulphide) derivative to functionalized single-walled carbon nanotubes. Carbon 50:857. doi:10.1016/j.carbon.2011.09.046

    Article  Google Scholar 

  27. González-Domínguez JM, Bespín-Gascón PCS, Anson-Casaós A, Díez-Pascual AM, Gómez-Fatou MA, Benito AM, Masera WK, Martíneza MT (2012) Covalent functionalization of MWCNTs with poly(p-phenylene sulphide) oligomers: a route to the efficient integration through a chemical approach. J Mater Chem 22:2185. doi:10.1039/c2jm35272a

    Article  Google Scholar 

  28. Díez-Pascual AM, Naffakh M (2013) Enhancing the thermomechanical behaviour of poly(phenylene sulphide) based composites via incorporation of covalently grafted carbon nanotubes. Compos Part A 54:10. doi:10.1016/j.compositesa.2013.06.018

    Article  Google Scholar 

  29. Yang JH, Xu T, Lu A (2009) Preparation and properties of poly (p-phenylene sulfide)/multiwall carbon nanotube composites obtained by melt compounding. Compos Sci Technol 69:147. doi:10.1016/j.compscitech.2008.08.030

    Article  Google Scholar 

  30. Yang JH, Xu T, Lu AJ (2008) Electrical properties of poly (phenylene sulfide)/multiwalled carbon nanotube composites prepared by simple mixing and compression. J Appl Polym Sci 109:720. doi:10.1002/app.28098

    Article  Google Scholar 

  31. Wu D, Wu LF, Zhou WD, Yang T, Zhang M (2009) Study on physical properties of multiwalled carbon nanotube/poly(phenylene sulfide) composites. Polym Eng Sci 49:1727. doi:10.1002/pen.21403

    Article  Google Scholar 

  32. Diez-Pascual AM, Jingwen G, Simard B, Gómez-Fatou MA (2012) Poly(phenylene sulphide) and poly(ether ether ketone) composites reinforced with single-walled carbon nanotube buckypaper: I—structure, thermal stability and crystallization behaviour. Compos A 43:997. doi:10.1016/j.compositesa.2011.11.002

    Article  Google Scholar 

  33. Brady DG (1976) The crystallinity of poly(phenylene sulfide) and its effect on polymer properties. J Appl Polym Sci 20:2541. doi:10.1002/app.1976.070200921

    Article  Google Scholar 

  34. He BB, Yuan X, Yang H, Tan H, Qian LX, Fu Q (2006) Ultrasonic measurement of orientation in HDPE/iPP blends obtained by dynamic packing injection molding. Polymer 47:2448. doi:10.1016/j.polymer.2006.02.020

    Article  Google Scholar 

  35. Jose MV, Dean D, Tyner J, Price G, Nyairo E (2007) Polypropylene/carbon nanotube nanocomposite fibers: process–morphology–property relationships. J Appl Polym Sci 103:3844. doi:10.1002/app.25475

    Article  Google Scholar 

  36. Ruan SL, Gao P, Yu TX (2006) Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes. Polymer 47:1604. doi:10.1016/j.polymer.2006.01.020

    Article  Google Scholar 

  37. Baji A, Mai YW, Wong SC, Abtahi M, Du XS (2010) Mechanical behavior of self-assembled carbon nanotube reinforced nylon 6,6 fibers. Compos Sci Technol 70:1401. doi:10.1016/j.compscitech.2010.04.020

    Article  Google Scholar 

  38. Caminiti R, D’Ilario L, Martinelli A, Piozzi A, Sadun C (1997) DSC, FT-IR, and energy dispersive X-ray diffraction applied to the study of the glass transition of poly(p-phenylene sulfide). Macromolecules 30:7970. doi:10.1021/ma970030v

    Article  Google Scholar 

  39. Gao Y, Ren K, Ning NY, Fu Q, Wang K, Zhang Q (2012) Stretching-induced interfacial crystalline structures and relevant mechanical properties in melt-spun polypropylene/whisker composite fibers. Polymer 53:2792. doi:10.1016/j.polymer.2012.04.020

    Article  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the Wenzhou Science and Technology Bureau (G20140004) and the Department of Education of Zhejiang Province (Y201432352) (Study on achieving high-performance environmental-friendly Poly(L-lactide), 2014) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Fu, Q., Niu, L. et al. Enhancement of the tensile strength in poly(p-phenylene sulfide) and multi-walled carbon nanotube nanocomposites by hot-stretching. J Mater Sci 50, 3622–3630 (2015). https://doi.org/10.1007/s10853-015-8923-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8923-2

Keywords

Navigation