Skip to main content
Log in

Novel synthesis of hexagonal WO3 nanostructures

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper discusses the synthesis and characterization of a new form of WO3 nanostructures based on the hexagonal WO3 (h-WO3) polymorph. This typically “metastable” phase was synthesized from a substoichiometric metal alkoxide precursor-tungsten (V) isopropoxide, by a novel colloidal synthesis method. Nanowires of h-WO3 were obtained upon heat-treating the sol–gel precursor at 400 °C. Further processing at elevated temperatures (515 °C) resulted in coarsening of the nanowires and the formation of nanowire bundles with polytypic character. Hexagonal WO3 differs from the other tungsten oxide polymorphs in that it possesses unique structural features such as long, hexagonal prism channels parallel to the c-axis and layered oxygen octahedra. This makes it a very attractive host matrix for metal ion intercalation for rechargeable batteries and for the selective gas sensing of amines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lietti L, Alemany JL, Forzatti P, Busca G, Ramis G, Giamello E, Bregani F (1996) Reactivity of V2O5-WO3/TiO2 catalysts in the selective catalytic reduction of nitric oxide by ammonia. Catal Today 29:143–148

    Article  Google Scholar 

  2. Livage J, Guzman G (1996) Aqueous precursors for electrochromic tungsten oxide hydrates. Solid State Ion 84:205–211

    Article  Google Scholar 

  3. Gouma P (2011) Nanoscale Polymorphic Oxides for Selective Chemosensors. Sci Adv Mater 3(5):787–793

    Article  Google Scholar 

  4. Wang L, Gouma P (2013) Selective microstructure synthesis and sensing dependencies: a WO3 study. In: Carpenter MA, Mathur S, Kolmakov A (eds) Metal oxide nanomaterials for chemical sensors. Springer, New York

  5. Gerand B, Nowogrocki G, Guenot J, Figlarz M (1979) Structural study of a new hexagonal form of tungsten oxide. J Solid State Chem 29:429–434

    Article  Google Scholar 

  6. Tilley RJD (1995) The crystal chemistry of the higher tungsten oxides. Int J of Refract Met Hard Mater 13:93–109

    Article  Google Scholar 

  7. Slade RCT, West BC, Hall GP (1989) Chemical and electrochemical mixed alkali metal insertion chemistry of the hexagonal tungsten trioxide framework. Solid State Ion 32–33:154–161

    Article  Google Scholar 

  8. Whittingham MS, Guo JD, Chen R, Chirayil T, Janauer G, Zavalij P (1995) Hydrothermal synthesis of new oxide materials. Solid State Ion 75:257–268

    Article  Google Scholar 

  9. Gouma PI, Prasad AK, Iyer KK (2006) Selective nanoprobes for ‘signaling gases’. Nanotechnology 17:S48–S53

    Article  Google Scholar 

  10. Comini E, Guidi V, Malagù C, Martinelli G, Pan Z, Sberveglieri G, Wang ZL (2004) Electrical properties of two dimensional tin oxide nanostructres. J Phys Chem B 108:1882–1887

    Article  Google Scholar 

  11. Gouma PI, Kalyanasundaram K, Bishop A (2006) Electrospun single-crystal MoO3 nanowires for biochemistry sensing probes. J Mater Res 21:2904–2910

    Article  Google Scholar 

  12. Han W, Hibino M, Kudo T (1998) Synthesis of the hexagonal form of tungsten trioxide from peroxopolytungstate via ammonium paratungstate decahyrate. Bull Chem Soc Jpn 71:933–937

    Article  Google Scholar 

  13. Gillet M, Delamare R, Gillet E (2005) Growth of epitaxial tungsten oxide nanorods. J Cryst Growth 279:93–99

    Article  Google Scholar 

  14. Wu Y, Xi Z, Zhang G, Yu J, Guo D (2006) Growth of hexagonal tungsten trioxide tubes. J Cryst Growth 292:143–148

    Article  Google Scholar 

  15. Gu Z, Li H, Zhai T, Yang W, Xia Y, Ma Y, Yao J (2007) Large-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals. J Solid State Chem 180:98–105

    Article  Google Scholar 

  16. Choi HG, Jung YH, Kim DK (2005) Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet. J Am Ceram Soc 88:1684–1686

    Article  Google Scholar 

  17. Balászi Cs, Prasad AK, Pfeifer J, Tóth AL, Gouma PI (2005) Wet Chemical synthesis of nanosize tungsten oxide for sensing applications. In: Pődör B, Horváth Zs, Basa P (eds) Proceedings of the first international workshop on semiconductor nanocrystals SEMINANO2005, Budapest, Hungary, pp 79-82

  18. Solonin YM, Khyzhun OY, Graivoronskaya EA (2001) Nonstoichiometric tungsten oxide based on hexagonal WO3. Cryst Growth Des 1:473–477

    Article  Google Scholar 

  19. Gu Z, Ma Y, Yang W, Zhang G, Yao J (2005) Self-assembly of highly oriented one-dimensional h-WO3 nanostructures. Chem Commun 28:3597–3599

    Article  Google Scholar 

  20. Sood S, Kisslinger K, Gouma P (2014) Nanowire Growth by an Electron-Beam-Induced Massive Phase Transformation. J Am Ceram Soc 97(12):3733–3736

    Article  Google Scholar 

Download references

Acknowledgements

The work was partially supported through a NIMS Internship Program award to K.K., sponsored by the National Institute of Materials Science, Tsukuba, Japan and by the NSF award DMR1106168 to P. Gouma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Gouma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouma, P.I., Kalyanasundaram, K. Novel synthesis of hexagonal WO3 nanostructures. J Mater Sci 50, 3517–3522 (2015). https://doi.org/10.1007/s10853-015-8918-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8918-z

Keywords

Navigation