Skip to main content
Log in

Microstructure evolution and mechanical properties of a submerged friction-stir-processed AZ91 magnesium alloy

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

AZ91 casting alloy is subjected to friction stir processing (FSP) in air (NFSP) and under water (SFSP). The thermal histories of the two FSP procedures are measured, and their effects on microstructure evolution and mechanical properties of the experimental materials are investigated. Compared with NFSP, the peak temperature during SFSP is about 150 °C lower and a much higher cooling rate of 13 °C/s is gained. Both NFSP and SFSP produce uniform recrystallized microstructures with dominant high-angle grain boundaries. The average grain size of the NFSP specimen is 7.8 μm, and SFSP results in further grain refinement with a grain size of 1.2 μm. The observed grain sizes of the two FSP specimens match well with the predicted values calculated by the Derby–Ashby model. TEM observation, temperature data, and model criterion indicate that the grain refinement mechanism during NFSP is attributed to continuous dynamic recrystallization (DRX), while continuous DRX and discontinuous DRX affect during SFSP. The mechanical properties of the SFSP alloy are much higher due to finer microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mordike BL, Ebert T (2001) Magnesium properties-applications-potential. Mater Sci Eng A 302:37–45

    Article  Google Scholar 

  2. Jin L, Lin DL, Mao DM, Zeng XQ, Ding WJ (2005) Mechanical properties and microstructure of AZ31 Mg alloy processed by two-step equal channel angular extrusion. Mater Lett 59:2267–2270

    Article  Google Scholar 

  3. Kim WJ, An CW, Kim YS, Hong SI (2002) Mechanical properties and microstructures of an AZ61 Mg alloy produced by equal channel angular pressing. Scripta Mater 47:39–44

    Article  Google Scholar 

  4. Pérez-Prado MT, del Valle JA, Ruano OA (2004) Grain refinement of Mg-Al-Zn alloys via accumulative roll bonding. Scripta Mater 51:1093–1097

    Article  Google Scholar 

  5. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50:1–78

    Article  Google Scholar 

  6. Thomas WM, Nicholas ED, Needham JC, Church MG, Templesmith P, Dawes CJ (1991) GB Patent Application, No. 91259788

  7. Feng AH, Xiao BL, Ma ZY, Chen RS (2009) Effect of friction stir processing produced on microstructure and mechanical properties of Mg-Al-Zn casting. Metall Mater Trans A 40:2447–2456

    Article  Google Scholar 

  8. Razal Rose A, Manisekar K, Balasubramanian V (2012) Influence of welding speed on tensile properties of friction stir welded AZ61 magnesium alloy. J Mater Eng Perform 21:257–265

    Article  Google Scholar 

  9. Feng AH, Ma ZY (2007) Enhanced mechanical properties of Mg-Al-Zn cast alloy via friction stir processing. Scripta Mater 56:397–400

    Article  Google Scholar 

  10. Cavaliere P, De Marco PP (2007) Fatigue behavior of friction stir processed AZ91 magnesium alloy produced by high pressure die casting. Mater Charact 58:226–232

    Article  Google Scholar 

  11. Yuan W, Panigahi SK, Mishra RS (2013) Achieving high strength and high ductility in friction stir processed cast magnesium alloy. Metall Mater Trans A 44:3675–3684

    Article  Google Scholar 

  12. Hung FY, Shih CC, Chen LH, Lui TS (2007) Microstructures and high temperature mechanical properties of friction stirred AZ31-Mg alloy. J Alloy Compd 428:106–114

    Article  Google Scholar 

  13. Xiao BL, Yang Q, Wang J, Wang WG, Xie GM, Ma ZY (2011) Enhanced mechanical properties of Mg-Gd-Y-Zr casting via friction stir processing. J Alloy Compd 509:2879–2884

    Article  Google Scholar 

  14. Yang Q, Xiao BL, Ma ZY (2012) Influence of process parameters on microstructure and mechanical properties of friction-stir-processed Mg-Gd-Y-Zr casting. Metall Mater Trans A 43:2094–2109

    Article  Google Scholar 

  15. Yang Q, Xiao BL, Wang D, Zheng MY, Wu K, Ma ZY (2013) Formation of long-period stacking ordered phase only within grains in Mg-Gd-Y-Zn-Zr casting by friction stir processing. J Alloy Compd 581:585–589

    Article  Google Scholar 

  16. Sato YS, Urata M, Kokawa H (2012) Parameters controlling microstructures and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063. Metall Mater Trans A 33:625–635

    Article  Google Scholar 

  17. Liu FC, Tan MJ, Liao J, Ma ZY, Meng Q, Nakata K (2013) Microstructural evolution and superplastic behavior in friction stir processed Mg-Li-Al-Zn alloy. J Mater Sci 48:8539–8546. doi:10.1007/s10853-013-7672-3

    Article  Google Scholar 

  18. Hofmann DC, Vecchio KS (2005) Submerged friction stir processing (SFSP): an improved method for creating ultrafine grained bulk materials. Mater Sci Eng A 402:234–241

    Article  Google Scholar 

  19. Su JQ, Nelson TW, Sterling CJ (2005) Friction stir processing of large-area bulk UFG aluminum alloys. Scripta Mater 52:135–140

    Article  Google Scholar 

  20. Darras B, Kishta E (2013) Submerged friction stir processing of AZ31 magnesium alloy. Mater Des 47:133–137

    Article  Google Scholar 

  21. Jata KV, Semiatin SL (2000) Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys. Scripta Mater 43:743–749

    Article  Google Scholar 

  22. Heinz B, Skrotzki B (2002) Characterization of a friction stir welded aluminum alloy 6013. Metall Mater Trans B 33:489–498

    Article  Google Scholar 

  23. Rhodes CG, Mahoney MW, Bingel WH, Calabrese M (2003) Fine-grain evolution in friction-stir processed 7050 aluminum. Scripta Mater 48:1451–1455

    Article  Google Scholar 

  24. Su JQ, Nelson TW, Sterling CJ (2003) A new route to bulk nanocrystalline materials. J Mater Res 18:1757–1760

    Article  Google Scholar 

  25. Sastry DH, Prasad Y, Vasu KI (1969) On the stacking fault energies of some close-packed metals. Scripta Metall 3:927–929

    Article  Google Scholar 

  26. Feng AH, Ma ZY (2009) Microstructure evolution of cast Mg-Al-Zn during friction stir processing and subsequent aging. Acta Mater 57:4248–4260

    Article  Google Scholar 

  27. Chai F, Zhang DT, Li YY (2014) Effect of thermal history on microstructures and mechanical properties of AZ31 magnesium alloy prepared by friction stir processing. Materials 7:1573–1589

    Article  Google Scholar 

  28. Celotto S, Bastow TJ (2001) Study of precipitation in aged binary Mg-Al and ternary Mg-Al-Zn alloys using 27Al NMR spectroscopy. Acta Mater 49:41–45

    Article  Google Scholar 

  29. Schmidt H, Hattel J, Wert J (2004) An analytical model for the heat generation in friction stir welding. Modelling Simul Mater Sci Eng 12:143–157

    Article  Google Scholar 

  30. Hofmann DC, Vecchio KS (2007) Thermal history analysis of friction stir processed and submerged friction stir processed aluminum. Mater Sci Eng A 465:165–175

    Article  Google Scholar 

  31. Tang W, Guo X, McClure JC, Murr LE, Nunes A (1988) Heat input and temperature distribution in friction stir welding. J Mater Process Manuf Sci 7:163–172

    Article  Google Scholar 

  32. Arbegast MJ, Hartley PJ (1988) In: Proceedings of the fifth international conference on trends in welding research, Pine Mountain, GA, USA

  33. Derby B, Ashby MF (1987) On dynamic recrystallization. Scripta Metall 21:879–884

    Article  Google Scholar 

  34. Frost HJ, Ashby MF (1982) Deformation Mechanism Maps. Pergamon Press, Oxford

    Google Scholar 

  35. Hines JA, Vecchio KS (1997) Recrystallization kinetics within adiabatic shear bands. Acta Mater 45:635–649

    Article  Google Scholar 

  36. Humphreys FJ, Hatherly M (1995) Recrystallization and related annealing phenomena, 2nd edn. Elsevier, Oxford, pp 229–232

    Google Scholar 

  37. Galiyev A, Kaibyshev R, Gottstein G (2001) Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Mater 49:1199–1207

    Article  Google Scholar 

  38. Chang CI, Du XH, Huang JC (2008) Processing nanograined microstructure in Mg-Al-Zn alloy by two-pass friction stir processing. Scripta Mater 59:356–359

    Article  Google Scholar 

  39. Sitdikov O, Kaibyshev R (2001) Dynamic recrystallization in pure magnesium. Mater Trans 42:1928–1937

    Article  Google Scholar 

  40. Liu CM, Liu ZJ, Zhu XR, Zhou HT (2006) Research and development progress of dynamic recrystallization in pure magnesium and its alloys. Trans Nonferrous Met Soc China 16:1–12 (In Chinese)

    Article  Google Scholar 

  41. Chang CI, Lee CJ, Huang JC (2004) Relationship between grain size and working strain rate and temperature during friction stir processing in AZ31 Mg alloy. Scripta Mater 51:509–514

    Article  Google Scholar 

  42. Ardell AJ (1985) Precipitation hardening. Metall Trans A 16:2131–2165

    Article  Google Scholar 

  43. Kumar N, Mishra RS, Huskamp CS, Sankaran KK (2011) Microstructure and mechanical properties of friction stir processed ultrafine grained Al-Mg-Sc sheet. Mater Sci Eng A 528:5587–5883

    Google Scholar 

  44. Tan JC, Tan MJ (2003) Dynamic continuous recrystallization characterization characteristics in two-stage deformation of Mg-3Al-1Zn alloy sheet. Mater Sci Eng A 339:124–132

    Article  Google Scholar 

  45. Mohri T, Mabuchi M, Nakamura M, Asahina T, Iwasaki H, Aizawa T, Higashi K (2000) Microstructural evolution and superplasticity of rolled Mg-9Al-1Zn. Mater Sci Eng A 290:139–144

    Article  Google Scholar 

  46. Higashi K, Wolfenstine J (1991) Microstructural evolution during superplastic flow of a binary Mg-8.5 wt% Li alloy. Mater Lett 10:329–332

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Fundamental Research Funds for the Central Universities (No. 2014ZG0028) and Research Fund for the Doctoral Program of Higher Education of China (No. 20130172110044)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Datong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, F., Zhang, D., Li, Y. et al. Microstructure evolution and mechanical properties of a submerged friction-stir-processed AZ91 magnesium alloy. J Mater Sci 50, 3212–3225 (2015). https://doi.org/10.1007/s10853-015-8887-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8887-2

Keywords

Navigation