Skip to main content
Log in

Investigation of Er-doped Sc2O3 transparent ceramics by positron annihilation spectroscopy

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

0.25 at.% Er-doped Sc2O3 transparent ceramics fabricated using the two-step sintering method with different combinations of sintering temperatures were investigated by positron annihilation spectroscopy. Analysis of the broadening of the annihilation photopeak revealed the presence of the same type of defect in all samples. The lack of long lifetimes (τ ≥ 2 ns) suggested no positronium formation or the lack of trapping sites large enough to trap positronium for long enough time for the annihilation to be observed. Analysis of positron annihilation lifetime revealed the presence of a single lifetime that ranged from 208 to 219 ps, depending on the sintering conditions. These results also suggest the absence of a significant presence of vacancy clusters and other larger open-volume defects, and that the dominant open-volume defect corresponds to monovacancies and/or complex defects associated with monovacancies. The bulk lifetime of Er-doped scandia is estimated to be equal or lower than 208 ps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fornasiero L, Mix E, Peters V, Petermann K, Huber G (1999) New Oxide Crystals for Solid State Lasers. Cryst Res Technol 34:255–260

    Article  Google Scholar 

  2. Li JG, Ikegami T, Mori T (2003) Fabrication of transparent Sc2O3 ceramics with powders thermally pyrolyzed from sulfate. J Mater Res 18:1816–1822

    Article  Google Scholar 

  3. McMillen CD, Kolis JW (2008) Hydrothermal single crystal growth of Sc2O3 and lanthanide-doped Sc2O3. J Crystal Growth 310:1939–1942

    Article  Google Scholar 

  4. Li JG, Ikegami T, Mori T (2004) Solution-based processing of Sc2O3 nanopowders yielding transparent ceramics. J Mater Res 19:733–736

    Article  Google Scholar 

  5. Lu J, Bisson JF, Takaichi K, Uematsu T, Shirakawa A, Musha M, Ueda K, Yagi H, Yanagitani T, Kaminskii AA (2003) Yb3+:Sc2O3 ceramic laser. Appl Phys Lett 83:1101–1103

    Article  Google Scholar 

  6. Lupei V, Lupei A, Ikesue A (2005) Transparent Nd and (Nd, Yb)-doped Sc2O3 ceramics as potential new laser materials. Appl Phys Lett 86:111118

    Article  Google Scholar 

  7. Boulon G, Lupei V (2007) Energy transfer and cooperative processes in Yb3+-doped cubic sesquioxide laser ceramics and crystals. J Lumin 125:45–54

    Article  Google Scholar 

  8. Lupei V, Lupei A, Boulon G, Jouini A, Ikesue A (2008) Cooperative absorption and emission in Yb:Sc2O3 ceramics. J Alloys Compd 451:179–181

    Article  Google Scholar 

  9. Bravo AC, Longuet L, Autissier D, Baumard JF, Vissie P, Longuet JL (2009) Influence of the powder preparation on the sintering of Yb-doped Sc2O3 transparent ceramics. Opt Mater 31:734–739

    Article  Google Scholar 

  10. Serivalsatit K, Kokuoz B, Kokuoz BY, Kennedy M, Ballato J (2010) Synthesis, processing, and properties of submicrometer-grained highly transparent yttria ceramics. J Am Cer Soc 93:1320–1325

    Article  Google Scholar 

  11. Yanagida T, Fujimoto Y, Kurosawa S, Watanabe K, Yagi H, Yanagitani T, Jary V, Futami Y, Yokota Y, Yoshikawa A, Uritani A, Iguchi T, Nikl M (2011) Ultrafast transparent ceramic scintillators using the Yb3+ charge transfer luminescence in RE2O3 host. Appl Phys Exp 4:126402

    Article  Google Scholar 

  12. Fukabori A, An L, Ito A, Chani V, Kamada K, Goto T, Yoshikawa A (2012) Scintillation characteristics of undoped Sc2O3 single crystals and ceramics. IEEE Trans Nuc Sci 59:2594–2600

    Article  Google Scholar 

  13. Chen IW, Wang XH (2000) Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404:168–171

    Article  Google Scholar 

  14. Eilers H (2007) Fabrication, optical transmittance, and hardness of IR-transparent ceramics made from nanophase yttria. J Eur Ceram Soc 27:4711–4717

    Article  Google Scholar 

  15. Serivalsatit K, Kokuoz BY, Kokuoz B, Ballato J (2009) Nanograined highly transparent yttria ceramics. Opt Lett 34:1033–1035

    Article  Google Scholar 

  16. Serivalsatit K, Ballato J (2010) Submicrometer grain-sized transparent erbium-doped scandia ceramics. J Am Ceram Soc 93:3657–3662

    Article  Google Scholar 

  17. Chen C, Zhou S, Lin H, Yi Q (2012) Fabrication and performance optimization of the magneto-optical (Tb1−xRx)3Al5O12 (R = Y, Ce) transparent ceramics. Appl Phys Lett 101:131908

    Article  Google Scholar 

  18. Serivalsatit K, Wasanapiarnpong T, Kucera C, Ballato J (2013) Synthesis of Er-doped Lu2O3 nanoparticles and transparent ceramics. Opt Mater 35:1426–1430

    Article  Google Scholar 

  19. Fernández P, de Diego N, del Río J, Llopis J (1989) A positron study of sintering processes in ZnO-based ceramics. J Phys 1:4853–4858

    Google Scholar 

  20. Yagi Y, Hirano S, Ujihira Y, Miyayama M (1999) Analysis of the sintering process of 2 mol % yttria-doped zirconia by positron annihilation lifetime measurements. J Mater Sci Lett 18:205–207

    Article  Google Scholar 

  21. Yu-Yang H, Chao X, Yu-Xin W, Yan-Qiong L, Wen D (2009) Influence of sintering temperature on defects in porous silica monoliths studied by positron annihilation techniques. Mater Sci Forum 607:204–206

    Article  Google Scholar 

  22. Djourelov N, Aman Y, Berovski K, Nédélec P, Charvin N, Garnier V, Djurado E (2011) Structure characterization of spark plasma sintered alumina by positron annihilation lifetime spectroscopy. Phys Status Solidi A 208:795–802

    Article  Google Scholar 

  23. Prochazka I (2001) Positron annihilation spectroscopy. Materials. Structure 8:55–60

    Google Scholar 

  24. Kansy J (1996) Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Instr Meth Phys Res A 374:235–244

    Article  Google Scholar 

  25. Urban-Klaehn M, Spaulding R, Hunt AW, Peterson ES (2007) Phys Stat Sol C 4:3732–3734

    Google Scholar 

  26. Schultz PJ, Lynn KG (1988) Interaction of positron beams with surfaces, thin films, and interfaces. Rev Mod Phys 60:701–779

    Article  Google Scholar 

  27. Asoka-Kumar P, Lynn KG, Welch DO (1994) Characterization of defects in Si and SiO2-Si using positrons. J Appl Phys 76:4935–4982

    Article  Google Scholar 

  28. Ito K, Nakanishi H, Ujihira Y (1999) Extension of the equation for the annihilation lifetime of ortho-positronium at a cavity larger than 1 nm in radius. J Phys Chem B 103:4555–4558

    Article  Google Scholar 

  29. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  30. Brown J, Mascher P, Kitai AH (1995) Positron lifetime spectroscopy and cathodoluminescence of polycrystalline terbium-doped yttria. J Electrochem Soc 142:958–960

    Article  Google Scholar 

  31. Saarinen K, Hautojarvi P, Corbel C (1998) Identification of defects in semiconductors. In: Stavola M (ed) Semiconductors and Semimetals, vol 51A. Academic Press, San Diego, p 209

    Google Scholar 

  32. Jacobsohn LG, Nastasi M, Daemen LL, Jenei Z, Asoka-Kumar P (2005) Positron annihilation spectroscopy of sputtered boron carbide films. Diamond Rel Mater 14:201–205

    Article  Google Scholar 

  33. Gheorghe C, Georgescu S, Lupei V, Lupei A, Ikesue A (2008) Absorption intensities and emission cross section of Er+3 in Sc2O3 transparent ceramics. J Appl Phys 103:083116

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the U.S. Department of Defense Joint Technology Office through their High Energy Laser Multidisciplinary Research Initiative (HEL-MRI) Program for Project ‘‘Eye-Safe Polycrystalline Lasers’’ AFOSR Contract # FA9550-07-1-0566. This material is based upon work supported by the National Science Foundation under Grant No. 1207080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Jacobsohn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobsohn, L.G., Serivalsatit, K., Quarles, C.A. et al. Investigation of Er-doped Sc2O3 transparent ceramics by positron annihilation spectroscopy. J Mater Sci 50, 3183–3188 (2015). https://doi.org/10.1007/s10853-015-8881-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8881-8

Keywords

Navigation