Skip to main content
Log in

Study on Defects in Fe-Doped SrTiO3 by Positron Annihilation Lifetime Spectroscopy

  • Chemistry and Physics
  • Published:
Wuhan University Journal of Natural Sciences

Abstract

SrTi1−xFexO3−δ ceramics were prepared using a traditional solid-state reaction method. From X-ray diffraction (XRD) result, we found that the doped Fe3+ dissolved in the lattice, and no secondary phase was observed. Cation vacancies in perovskite oxides were identified via positron annihilation lifetime spectroscopy (PALS) measurements. Undoped and Fe-doped SrTiO3 ceramics and single-crystal SrTiO3 were measured by PALS at room temperature. The results show that the main defects in undoped SrTiO3 ceramics are Ti-related defects, and the isolated Ti vacancy lifetime is about 183.4 ps. With the increase of Fe3+, the concentration of the Ti vacancies decreases accompanied by the appearance of the V″SrnV ∙∙o (defect association of Sr vacancies and multiple O vacancies) vacancy defect complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghosh V J, Nielsen B, Friessnegg T. Identifying open-volume defects in doped and undoped perovskite-type LaCoO3, PbTiO3, and BaTiO3 [J]. Physical Review B, 2000, 61(1): 207–212.

    Article  CAS  Google Scholar 

  2. George A M, ÍIguez J, Bellaiche L. Anomalous properties in ferroelectrics induced by atomic ordering [J]. Nature, 2001, 413(6851): 54–57.

    Article  CAS  PubMed  Google Scholar 

  3. Noll F, Münch W, Denk I, et al. SrTiO3, as a prototype of a mixed conductor conductivities, oxygen diffusion and boundary effects [J]. Solid State Ionics, Diffusion & Reactions, 1996, 86–88(part-P2): 711–717.

    Article  Google Scholar 

  4. Choi G M, Tuller H L. ChemInform Abstract: Defect structure and electrical properties of single-crystal Ba0.03Sr0.97 TiO3 [J]. Journal of the American Ceramic Society, 2010, 71(4): 201–205.

    Article  Google Scholar 

  5. Merkle R, Maier J. Oxygen incorporation into Fe-doped SrTiO3: Mechanistic interpretation of the surface reaction [J]. Physical Chemistry Chemical Physics, 2002, 4(17): 4140–4148.

    Article  CAS  Google Scholar 

  6. Ohtomo A, Hwang H Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface [J]. Nature, 2004, 441(6973): 423–426.

    Article  CAS  Google Scholar 

  7. Qin M, Gao F, Cizek J, et al. Point defect structure of La-doped SrTiO3 ceramics with colossal permittivity [J]. Acta Materialia, 2019, 164: 76–89

    Article  CAS  Google Scholar 

  8. Tarun M C, Selim F A, Mccluskey M D. Persistent photoconductivity in bulk strontium titanate [J]. Physical Review Letters, 2013, 111(18): 187403.

    Article  CAS  PubMed  Google Scholar 

  9. Gomann K, Bochardt G, Schulz M, et al. Sr diffusion in undoped and La-doped SrTiO3 single crystals under oxidizing conditions [J]. Physical Chemistry Chemical Physics, 2005, 7(9): 2053–2060.

    Article  PubMed  Google Scholar 

  10. René Meyer, Waser R, Helmbold J, et al. Observation of vacancy defect migration in the cation sublattice of complex oxides by 18O tracer experiments [J]. Physical Review Letters, 2003, 90(10): 105901.

    Article  CAS  Google Scholar 

  11. Leipner H S, Hübner C G, Staab T E M, et al. Positron annihilation at dislocations and related point defects in semiconductors [J]. Physica Status Solidi, 1999, 171(1): 377–382.

    Article  CAS  Google Scholar 

  12. Jia C L, Urban K. Atomic-resolution measurement of oxygen concentration in oxide materials [J]. Science, 2004, 303(5666): 2001–2004.

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka T, Matsunaga K, Ikuhara Y, et al. First-principles study on structures and energetics of intrinsic vacancies in SrTiO3 [J]. Physical Review B, 2003, 2002(192): 325–330.

    Google Scholar 

  14. Keeble D J, Wicklein S, Dittmann R, et al. Identification of A- and B-site cation vacancy defects in perovskite oxide thin films [J]. Physical Review Letters, 2010, 105(22): 3987–3996.

    Article  CAS  Google Scholar 

  15. Hamid A S, Uedono A, Chikyow T, et al. Vacancy-type defects and electronic structure of perovskite-oxide SrTiO3 from positron annihilation [J]. Physica Status Solidi A-Applications and Materials Science, 2006, 203(2): 300–305.

    Article  CAS  Google Scholar 

  16. Shimoyama K, Kiyohara M, Kubo K, et al. Epitaxial growth of BaTiO3/SrTiO3 structures on SrTiO3 substrate with automatic feeding of oxygen from the substrate [J]. Journal of Applied Physics, 2002, 92(8): 4625–4630.

    Article  CAS  Google Scholar 

  17. Uedono A, Kiyohara M, Shimoyama K, et al. Vacancy-type defects in SrTiO3 probed by a monoenergetic positron beam [J]. Journal of Applied Physics, 2004, 91(8): 5307–5312.

    Article  CAS  Google Scholar 

  18. Tuomisto F, Makkonen I. Defect identification in semiconductors with positron annihilation: Experiment and theory [J]. Reviews of Modern Physics, 2013, 85(4): 1583–1631.

    Article  CAS  Google Scholar 

  19. Keeble D J, Mackie R A, Egger W, et al. Identification of vacancy defects in a thin film perovskite oxide [J]. Physical Review B, 2010, 81(6): 064102.

    Article  CAS  Google Scholar 

  20. Claus J, Leonhardt M, Maier J. Tracer diffusion and chemical diffusion of oxygen in acceptor doped SrTiO3 [J]. Journal of the Physics and Chemistry of Solids, 2000, 61(8): 1199–1207.

    Article  CAS  Google Scholar 

  21. Helmbold J, Borchardt G, Meyer R, et al. Defects and Surface-Induced Effects in Advanced Perovskites [M]. Heidelberg: Springer-Verlag, 2000.

    Google Scholar 

  22. Jung W C, Tuller H L. Impedance study of SrTi1−xFe xO3−δ, (x=0.05 to 0.80) mixed ionic-electronic conducting model cathode [J]. Solid State Ionics, 2009, 180(11):843–847.

    Article  CAS  Google Scholar 

  23. Moos R, Hardtl K H. Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1 000 °C and 1400 C [J]. Journal of the American Ceramic Society, 1997, 80(10): 2549–2562.

    Article  CAS  Google Scholar 

  24. Denk I, Wolfram Münch, Maier J. Partial conductivities in SrTiO3: Bulk polarization experiments, oxygen concentration cell measurements, and defect-chemical modeling [J]. Journal of the American Ceramic Society, 1995, 78(12): 3265–3272.

    Article  CAS  Google Scholar 

  25. Shi T, Chen Y, Guo X. Defect chemistry of alkaline earth metal (Sr/Ba) titanates [J]. Progress in Materials Science, 2016, 80: 77–132.

    Article  CAS  Google Scholar 

  26. Guo X, Fleig J, Maier J. Determination of electronic and ionic partial conductivities of a grain boundary: method and application to acceptor-doped SrTiO3 [J]. Solid State Ionics, 2002, 154(12):563–569.

    Article  Google Scholar 

  27. De Souza R A, Fleig J, Merkle R, et al. SrTiO3: A model electroceramic [J]. Zeitschrift Für Metallkunde, 2013, 94(3): 218–225.

    Article  Google Scholar 

  28. Yoo H I, Oh T S, Kwon H S, Electrical conductivity-defect structure correlation of variable-valence and fixed-valence acceptor-doped BaTiO3 in quenched state [J]. Physical Chemistry Chemical Physics, 2009, 11(17): 3115–3126.

    Article  CAS  PubMed  Google Scholar 

  29. Mangalam R V, Chakrabrati M, Sanyal D, et al. Identifying defects in multiferroic nanocrystalline BaTiO3 by positron annihilation techniques [J]. Journal of Physics Condensed Matter An Institute of Physics Journal, 2009, 21(44): 445902.

    Article  CAS  PubMed  Google Scholar 

  30. Mackie R A, Singh S, Laverock J, et al. Vacancy defect positron lifetimes in strontium titanate [J]. Physical Review B, 2009, 79(1): 014102.

    Article  CAS  Google Scholar 

  31. Akhtar M J, Akhtar Z U N, Jackson R A, et al. Computer simulation studies of strontium titanate [J]. Journal of the American Ceramic Society, 1995, 78(2): 421–428.

    Article  CAS  Google Scholar 

  32. Singh S, Mcguire S. Cation vacancies in ferroelectric PbTiO3 and Pb(Zr,Ti)O3 [J]. Physical Review B, 2007, 76(14): 4109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Wang.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (11575129, 11275142)

Biography: JIN Yuanyuan, female, Master candidate, research direction: electronic ceramic materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Li, X., Hao, Y. et al. Study on Defects in Fe-Doped SrTiO3 by Positron Annihilation Lifetime Spectroscopy. Wuhan Univ. J. Nat. Sci. 24, 417–422 (2019). https://doi.org/10.1007/s11859-019-1415-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-019-1415-5

Key words

CLC number

Navigation