Skip to main content
Log in

Non-covalent stabilization and functionalization of boron nitride nanosheets (BNNSs) by organic polymers: formation of complex BNNSs-containing structures

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The straightforward non-covalent functionalization and solubilization of hexagonal boron nitride nanosheets (BNNSs) has been achieved by reacting either polythiophene or polyvinylpyrrolidone polymers with exfoliated BNNSs. The BNNSs apparently form strong ππ stacking interactions with the polymers to yield stable derivatized nanosheets with modified properties. A number of polythiophene polymers functionalized with carboxylic acid groups that are connected to the thiophene subunit by varying numbers of CH2-hydrocarbon linker units have also been tethered to the exfoliated BNNSs. These BNNS–polythiophene–(CH2)n–COOH structures have been further coordinated to pre-formed TiO2 nanoparticles to form more complex BNNS–polythiophene–(CH2)n–COO–TiO2 hybrid nanomaterials through covalent binding between the TiO2 nanoparticle surface and the carboxylic acid functional group of the BNNS–polythiophene unit. These novel structures have been characterized by SEM, TEM, FTIR, UV–Vis, and other spectroscopic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4(6):2979–2993

    Article  Google Scholar 

  2. Corso M, Auwrter W, Muntwiler M, Tamai A, Greber T, Osterwalder J (2004) Boron nitride nanomesh. Science 303(5655):217–220

    Article  Google Scholar 

  3. Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang ZF, Storr K, Balicas L, Liu F, Ajayan PM (2010) Atomic layers of hybridized boron nitride and graphene domains. Nat Mater 9(5):430–435

    Article  Google Scholar 

  4. Lin Y, Williams TV, Connell JW (2010) Soluble, exfoliated hexagonal boron nitride nanosheets. J Phys Chem Lett 1(1):277–283

    Article  Google Scholar 

  5. Pakdel A, Wang X, Bando Y, Golberg D (2013) Nonwetting white graphene films. Acta Mater 61(4):1266–1273

    Article  Google Scholar 

  6. Zhi C, Bando Y, Tang C, Kuwahara H, Golberg D (2009) Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv Mater 21(28):2889–2893

    Article  Google Scholar 

  7. Wang Y, Shi Z, Yin J (2011) Boron nitride nanosheets: large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole. J Mater Chem 21:11371–11377

    Article  Google Scholar 

  8. Pacile D, Meyer JC, Girit CO, Zettl A (2008) The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl Phys Lett 92:133107

    Article  Google Scholar 

  9. Nag A, Raidongia K, Hembram KPSS, Datta R, Waghmare UV, Rao CNR (2010) Graphene analogues of bn: novel synthesis and properties. ACS Nano 4(3):1539–1544

    Article  Google Scholar 

  10. Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan PM (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10(8):3209–3215

    Article  Google Scholar 

  11. Yu J, Huang X, Wu C, Wu X, Wang G, Jiang P (2012) Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer 53(2):471–480

    Article  Google Scholar 

  12. Xu X, Sun B, Berman PR, Steel DG, Bracker AS, Gammon D, Sham LJ (2007) Coherent optical spectroscopy of a strongly driven quantum dot. Science 317(5840):929–932

    Article  Google Scholar 

  13. Huang Q, Sandanayaka A, Bando Y, Zhi C, Ma R, Shen G, Golberg D, Zhao J, Araki Y, Ito O, Gao L (2007) Donoracceptor nanoensembles based on boron nitride nanotubes. Adv Mater 19(7):934–938

    Article  Google Scholar 

  14. Coleman JN, Lotya M, ONeill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stan-ton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017):568–571

    Article  Google Scholar 

  15. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214

    Article  Google Scholar 

  16. Velayudham S, Lee CH, Xie M, Blair D, Bauman N, Yap YK, Green SA, Liu H (2010) Noncovalent functionalization of boron nitride nanotubes with poly(p-phenylene-ethynylene)s and polythiophene. ACS Appl Mater Interfaces 2(1):104–110

    Article  Google Scholar 

  17. Sainsbury T, Satti A, May P, Wang Z, McGovern I, Gunko YK, Coleman J (2012) Oxygen radical functionalization of boron nitride nanosheets. J Am Chem Soc 134(45):18758–18771

    Article  Google Scholar 

  18. Star A, Stoddart JF, Steuerman D, Diehl M, Boukai A, Wong EW, Yang X, Chung SW, Choi H, Heath JR (2001) Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew Chem Int Ed 40(9):1721–1725

    Article  Google Scholar 

  19. Steuerman DW, Star A, Narizzano R, Choi H, Ries RS, Nicolini C, Stoddart JF, Heath JR (2002) Interactions between conjugated polymers and single-walled carbon nanotubes. J Phys Chem B 106(12):3124–3130

    Article  Google Scholar 

  20. Tallury SS, Pasquinelli MA (2010) Molecular dynamics simulations of flexible polymer chains wrapping single-walled carbon nanotubes. J Phys Chem B 114:4122–4129

    Article  Google Scholar 

  21. Tallury SS, Pasquinelli MA (2010) Molecular dynamics simulations of polymers with stiff backbones interacting with single-walled carbon nanotubes. J Phys Chem B 114(29):9349–9355

    Article  Google Scholar 

  22. Nasrabadi AT, Foroutan M (2010) Interactions between polymers and single-walled boron nitride nanotubes: a molecular dynamics simulation approach. J Phys Chem B 114(47):15429–15436

    Article  Google Scholar 

  23. Fichou D (ed) (1999) Handbook of oligo- and polythiophenes. Wiley-VCH Verlag GmbH

  24. Klaus Mllen GW (ed) (1998) Electronic materials: the Oligomer Approach. Wiley-VCH

  25. Wajid AS, Das S, Irin F, Ahmed HT, Shelburne JL, Parviz D, Fullerton RJ, Jankowski AF, Hedden RC, Green MJ (2012) Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon 50(2):526–534

    Article  Google Scholar 

  26. Bourlinos AB, Georgakilas V, Zboril R, Steriotis TA, Stubos AK, Trapalis C (2009) Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes. Solid State Commun 149(47–8):2172–2176

    Article  Google Scholar 

  27. Lu S, Zeng L, Wu T, Ren B, Niu J, Liu H, Zhao X, Mao J (2011) Efficient hybrid carboxylated polythiophene/nanocrystalline TiO2 heterojunction solar cells. Sol Energy 85(9):1967–1971

    Article  Google Scholar 

  28. Kim B, Chen L, Gong J, Osada Y (1999) Titration behavior and spectral transitions of water-soluble polythiophene carboxylic acids. Macromolecules 32(12):3964–3969

    Article  Google Scholar 

  29. Sang X, Wang P, Bu J (2011) Advanced materials research. Adv Mater Res 284–286:1846–1849

    Google Scholar 

  30. Englebienne P, Weiland M (1996) Synthesis of water-soluble carboxylic and acetic acid-substituted poly(thiophenes) and the application of their photochemical properties in homogeneous competitive immunoassays. Chem Commun 0:1651–1652

    Article  Google Scholar 

  31. Yanagida S, Senadeera G, Nakamura K, Kitamura T, Wada Y (2004) Polythiophene-sensitized TiO2 solar cells. J Photochem Photobiol A 166:75–80

    Article  Google Scholar 

  32. Rose A, Tovar JD, Yamaguchi S, Nesterov EE, Zhu Z, Swager TM (2007) Energy migration in conjugated polymers: the role of molecular structure. Philos Trans R Soc A 365(1855):1589–1606

    Article  Google Scholar 

  33. Chan HSO, Ng SC (1998) Synthesis, characterization and applications of thiophene-based functional polymers. Prog Polym Sci 23(7):1167–1231

    Article  Google Scholar 

  34. Wang ZS, Hara K, Dan-oh Y, Kasada C, Shinpo A, Suga S, Arakawa H, Sugihara H (2005) Photophysical and (photo)electrochemical properties of a coumarin dye. J Phys Chem B 109(9):3907–3914

    Article  Google Scholar 

  35. Nazeeruddin MK, Humphry-Baker R, Liska P, Gratzel M (2003) Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J Phys Chem B 107(34):8981–8987

    Article  Google Scholar 

  36. Duffy NW, Dobson KD, Gordon KC, Robinson BH, McQuillan A (1997) In situ infrared spectroscopic analysis of the adsorption of ruthenium(ii) bipyridyl dicarboxylic acid photosensitisers to TiO2 in aqueous solutions. Chem Phys Lett 266(5):451–455

    Article  Google Scholar 

  37. Nazeeruddin MK, Humphry-Baker R, Officer DL, Campbell WM, Burrell AK, Gratzel M (2004) Application of metalloporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity. Langmuir 20(15):6514–6517

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Department of Chemistry, the Syracuse University Forensic and National Security Sciences Institute (FNSSI) and the College of Arts and Sciences at Syracuse University for their support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Spencer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, P., Spencer, J.T. Non-covalent stabilization and functionalization of boron nitride nanosheets (BNNSs) by organic polymers: formation of complex BNNSs-containing structures. J Mater Sci 50, 313–323 (2015). https://doi.org/10.1007/s10853-014-8590-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8590-8

Keywords

Navigation