Skip to main content
Log in

In-situ crystal growth and photoluminescence properties of YBO3: Tb3+ microstructures

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) YBO3:Tb3+ flower-like and dense flower-like hierarchitecture constituted of nanoflakes are solvothermally synthesized in the presence of polyborate precursors in the mixture of ethanol and water. The growth process of the YBO3:Tb3+ flowers and dense flowers was explored based on the time-dependent experiment and the results showed that the growth mechanism follows an in situ growth rather than self-assembly process as reported previously. YBO3:Tb3+ morphologies composed of nanoflakes are achieved by controlling the concentration of ethanol and dependence of photoluminescence on morphology was studied. Remarkable photoluminescence enhancement was observed for YBO3:Tb3+ with flower-like morphology demonstrating the potential of the microstructure in future applications as a green phosphor. Such a synthetic method and growth mechanism may be applied to fabricate complex 3D architectures of other materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baek JY, Ha HW, Kim IY, Hwang SJ (2009) Hierarchically assembled 2D nanoplates and 0D nanoparticles of lithium-rich layered lithium manganates applicable to lithium ion batteries. J Phys Chem C 113:17392–17398

    Article  Google Scholar 

  2. Tong GX, Guan JG, Xiao ZD, Mou FZ, Wang W, Yan GQ (2008) In situ generate H2 bubble-engaged assembly: a one-Step approach for shape-controlled growth of Fe nanostructures. Chem Mater 20:3535–3539

    Article  Google Scholar 

  3. Nikoobakht B, Wang ZL, El-Sayed MA (2000) Self-assembly of gold nanorods. J Phys Chem B 104:8635–8640

    Article  Google Scholar 

  4. Wang DH, Choi DW, Yang ZG, Viswanathan VV, Nie ZM, Wang CM, Song YJ, Zhang JG, Liu J (2008) Synthesis and li-ion insertion properties of highly crystalline mesoporous rutile TiO2. Chem Mater 20:3435–3442

    Article  Google Scholar 

  5. Mou FZ, Guan JG, Sun ZG, Fan XA, Tong GX (2010) In situ generated dense shell-engaged Ostwald ripening: A facile controlled-preparation for BaFe12O19 hierarchical hollow fiber arrays. J Solid State Chem 183:736–743

    Article  Google Scholar 

  6. Perez-Ramirez J, Christensen CH, Egeblad K, Christensen CH, Groen JC (2008) Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem Soc Rev 37:2530–2542

    Article  Google Scholar 

  7. Colfen H, Mann S (2003) Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew Chem Int Ed 42:2350–2365

    Article  Google Scholar 

  8. Boyer D, Bertrand-Chadeyron G, Mahiou R, Caperaa C, Cousseins JC (1999) Synthesis dependent luminescence efficiency in Eu3+ doped polycrystalline YBO3. J Mater Chem 9:211–214

    Article  Google Scholar 

  9. Jia G, You H, Yang M, Zhang L, Zhang H (2009) Uniform lanthanide orthoborates LnBO3 (Ln = Gd, Nd, Sm, Eu, Tb, and Dy) microplates: general synthesis and luminescence properties. J Phys Chem C 113:16638–16644

    Article  Google Scholar 

  10. Mansuy C, Nedelec JM, Dujardin C, Mahiou R (2007) Concentration effect on the scintillation properties of sol-gel derived LuBO3 doped with Eu3+ and Tb3+. Opt Mater 29:697–702

    Article  Google Scholar 

  11. Wang X, Li Y (2003) Fullerene-like rare-earth nanoparticles. Angew Chem Int Ed 42:3497–3500

    Article  Google Scholar 

  12. Yang J, Lin C, Wang Z, Lin J (2006) In(OH)3 and In2O3 nanorod bundles and spheres: microemulsion-mediated hydrothermal synthesis and luminescence properties. Inorg Chem 45:8973–8979

    Article  Google Scholar 

  13. Li W, Shi E, Zhong W, Yin Z (1999) Growth mechanism and growth habit of oxide crystals. J Cryst Growth 203:186–196

    Article  Google Scholar 

  14. Yang J, Li C, Zhang X, Quan Z, Zhang C, Li H, Lin J (2008) Self-assembled 3D architectures of LuBO3:Eu3+: phase-selective synthesis, growth mechanism, and tunable luminescent properties. Chem Eur J 14:4336–4345

    Article  Google Scholar 

  15. Rabinovitz RL, Johnston KJ, Diaz AL (2010) Investigation of the effect of Gd3 + on host-to-europium transfer efficiency in (Y, Gd)BO3:Eu3+ under VUV excitation. J Phys Chem C 114:13884–13889

    Article  Google Scholar 

  16. Xu Z, Li C, Cheng Z, Zhang C, Li G, Peng C, Lin J (2010) Self-assembled 3D architectures of lanthanide orthoborate: hydrothermal synthesisand luminescence properties. CrystEngComm 12:549–557

    Article  Google Scholar 

  17. Zhang XW, Marathe A, Sohal S, Holtz M, Davis M, Hope-Weeks LJ, Chaudhuri J (2012) Synthesis and photoluminescence properties of hierarchical architectures of YBO3:Eu3+. J Mater Chem 22:6485–6490

    Article  Google Scholar 

  18. Zhang XW, Zhao Z, Zhang X, Marathe A, Cordes D, Weeks B, Chaudhuri J (2013) Tunable photoluminescence and energy transfer of YBO3:Tb3+, Eu3+ for white light emitting diodes. J Mater Chem C 1:7202–7207

    Article  Google Scholar 

  19. Buissette V, Moreau M, Gacoin T, Boilot JP, Chane-Ching JY, Mercier TL (2004) Colloidal synthesis of luminescent rhabdophane LaPO4:Ln3+·xH2O (Ln = Ce, Tb, Eu; x ≈ 0.7) nanocrystals. Chem Mater 16:3767–3773

    Article  Google Scholar 

  20. Zhang XW, Zhang MF, Xiong SL, Zhu YC, Wang XQ, Gu J, Wang PF, Shen Y, Shi SJ, Qian YT (2010) Hydrothermal synthesis and luminescent properties of LaPO4: Eu3+ 3D microstructures with controllable phase and morphology. Mater Res Bull 45:1324–1329

    Article  Google Scholar 

  21. Wang Z, He P, Wang R, Zhao J, Gong M (2010) New red phosphor for near-ultraviolet light-emitting diodes with high color-purity. Mater Res Bull 45:240–242

    Article  Google Scholar 

  22. Guo C, Gao F, Xu Y, Liang L, Shi FG, Yan B (2009) Efficient red phosphors Na5Ln(MoO4)4: Eu3 + (Ln = La, Gd and Y) for white LEDs. J Phys D Appl Phys 42:095407

    Article  Google Scholar 

  23. Chadeyron G, El-Ghozzi M, Mahiou R, Arbus A, Cousseins JC (1997) Revised structure of the orthoborate YBO3. J Solid State Chem 128:261–266

    Article  Google Scholar 

  24. Jia G, You H, Liu K, Zheng Y, Guo N, Jia J, Zhang H (2010) Highly uniform YBO3 hierarchical architectures: facile synthesis and tunable luminescence properties. Chem Eur J 16:2930–2937

    Article  Google Scholar 

  25. Xu Y, Ma D, Chen X, Yang D, Huang S (2009) Bisurfactant-controlled synthesis of three-dimensional YBO3/Eu3+architectures with tunable wettability. Langmuir 25:7103–7108

    Article  Google Scholar 

  26. Chung C, Hsu C, Lu C (2011) Preparation and mechanism of nest-like YBO3: Tb3+ phosphors synthesized via the microemulsion-mediated hydrothermal process. J Am Ceram Soc 94:2884–2889

    Article  Google Scholar 

  27. Yang L, Zhou L, Chen X, Liu X, Hua P, Shi Y, Yue X, Tang Z, Huang Y (2011) Hydrothermal synthesis of YBO3:Tb3+ microflowers and their luminescence properties. J Alloy Compd 509:3771–3866

    Article  Google Scholar 

  28. Jiang XC, Sun LD, Yan CH (2004) Ordered nanosheet-based YBO3:Eu3 + assemblies: synthesis and tunable luminescent properties. J Phys Chem B 108:3387–3390

    Article  Google Scholar 

  29. Zhang J, Lin J (2004) Vaterite-type YBO3:Eu3+ crystals: hydrothermal synthesis, morphology and photoluminescence properties. J Cryst Growth 271:207–215

    Article  Google Scholar 

  30. Li H, Chai L, Wang X, Wu X, Xi G, Liu Y, Qian Y (2007) Hydrothermal growth and morphology modification of β-NiS three-dimensional flowerlike architectures. Cryst Growth Des 7:1918–1922

    Article  Google Scholar 

  31. Gong Q, Qian X, Ma X, Zhu Z (2006) Large-scale fabrication of novel hierarchical 3D CaMoO4 and SrMoO4mesocrystals via a microemulsion-mediated Route. Cryst Growth Des 6:1821–1825

    Article  Google Scholar 

  32. Meulenkamp EA (1998) Synthesis and growth of ZnO nanoparticles. J Phys Chem B 102:5566–5572

    Article  Google Scholar 

  33. Takeshita S, Honda J, Isobe T, Sawayama T, Niikura S (2010) Size-tunable solvothermal synthesis of Zn2GeO4:Mn2+ nanophosphor in water/diethylene glycol system. Cryst Growth Des 10:4494–4500

    Article  Google Scholar 

  34. Zhong S, Lu Y, Gao M, Liu S, Peng J, Zhang L, Yu S (2012) Monodisperse mesocrystals of YF3 and Ce3+/Ln3+ (Ln = Tb, Eu) co-activated YF3: shape control synthesis, luminescent properties, and Biocompatibility. Chem Eur J 18:5222–5231

    Article  Google Scholar 

  35. Wan J, Wang Z, Chen X, Mu L, Qian Y (2005) Shape-tailored photoluminescent intensity of red phosphor Y2O3:Eu3+. J Cryst Growth 284:538–543

    Article  Google Scholar 

  36. Zhu Q, Li J, Li X, Sun X, Sakka Y (2011) Monodisperse colloidal spheres for (Y, Eu)2O3 red-emitting phosphors: establishment of processing window and size-dependent luminescence behavior. Sci Technol Adv Mater 12:055001

    Article  Google Scholar 

Download references

Acknowledgements

We like to acknowledge the support of the National Science Foundation (NSF) Grant #MRI0922898 for the TEM work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jharna Chaudhuri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1438 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, X., Zhao, Z. et al. In-situ crystal growth and photoluminescence properties of YBO3: Tb3+ microstructures. J Mater Sci 50, 251–257 (2015). https://doi.org/10.1007/s10853-014-8583-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8583-7

Keywords

Navigation