Skip to main content
Log in

Mechanical, thermal, and flame-retardant performance of polyamide 11–halloysite nanotube nanocomposites

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study focused on the influence of different filler loadings on the elongation at break and flammability properties of the PA11/FR/HNTs nanocomposites. Polyamide 11 (PA11)/flame-retardant (FR) additives/halloysite nanotubes (HNTs) nanocomposites were melt compounded via twin-screw extrusion for all the compositions. Three FR additive loadings (15, 20, and 25 wt%) and three HNTs loadings (2.5, 5, and 10 wt%) were selected. The formula with 25 % FR and 2.5 % HNT had the lowest additives content and the highest elongation at break of 10.22 % among all UL-94 V-0 rated formulas. A homogeneous dispersion of HNTs in PA11 matrix was observed by transmission electron microscopy. Differential scanning calorimeter measurements indicated that HNTs behaved as nucleating agents by accelerating the rate of crystallization, thus increasing crystallization temperature. The young’s modulus of the PA11 nanocomposites was enhanced with the addition of HNTs. Micro-scale combustion calorimeter results demonstrated that the addition of HNTs also decreased the peak heat release rate of the nanocomposites. These results indicate the effectiveness of HNTs on the mechanical, thermal, and flame-retardant performance of PA11/FR/HNTs nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Joussein E, Petit S, Churchman J et al (2005) Halloysite clay minerals—a review. Clay Miner 40:383–426

    Article  Google Scholar 

  2. HNT (2014) Halloysite Nanotubes. http://www.naturalnano.com/index.php?option=com_content&task=view&id=17&Itemid=45. Accessed 3 Sept 2014

  3. Prashantha K, Lacrampe MF, Krawczak P (2011) Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties. Express Polym Lett 5:295–307

    Article  Google Scholar 

  4. Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59:574–582. doi:10.1002/pi.2754

    Google Scholar 

  5. Liu C, Luo YF, Jia ZX et al (2011) Enhancement of mechanical properties of poly (vinyl chloride) with polymethyl methacrylate-grafted halloysite nanotube. Express Polym Lett 5:591–603

    Article  Google Scholar 

  6. Bulter S, Kim G, Koo JH et al (2011) Flame retardant polyamide 11–halloysite nanotube nanocomposites: mechanical, thermal, and flammability characterization. In: Proceedings of 43rd international SAMPE technical conference, Ft. Worth, TX, pp 17–20

  7. Guo B, Zou Q, Lei Y et al (2009) Crystallization behavior of polyamide 6/halloysite nanotubes nanocomposites. Thermochim Acta 484:48–56

    Article  Google Scholar 

  8. Lecouvet B, Gutierrez JG, Sclavons M, Bailly C (2011) Structure–property relationships in polyamide 12/halloysite nanotube nanocomposites. Polym Degrad Stab 96:226–235

    Article  Google Scholar 

  9. Marney DCO, Russell LJ, Wu DY et al (2008) The suitability of halloysite nanotubes as a fire retardant for nylon 6. Polym Degrad Stab 93:1971–1978

    Article  Google Scholar 

  10. Prashantha K, Schmitt H, Lacrampe MF, Krawczak P (2011) Mechanical behaviour and essential work of fracture of halloysite nanotubes filled polyamide 6 nanocomposites. Compos Sci Technol 71:1859–1866

    Article  Google Scholar 

  11. Deng S, Zhang J, Ye L (2009) Halloysite–epoxy nanocomposites with improved particle dispersion through ball mill homogenisation and chemical treatments. Compos Sci Technol 69:2497–2505

    Article  Google Scholar 

  12. Liu Y, Feng Z, Wang Q (2009) The investigation of intumescent flame-retardant polypropylene using a new macromolecular charring agent polyamide 11. Polym Compos 30:221–225

    Article  Google Scholar 

  13. Wohlers T (2014) Wohlers Report 2014: 3D printing and additive manufacturing state of the industry. Wohlers Associates Inc., Fort Collins

    Google Scholar 

  14. Koo JH (2006) Polymer nanocomposites: processing, characterization, and applications. McGraw-Hill Professional, NY

    Google Scholar 

  15. Johnson B, Koo JH (2012) Analysis of the selective laser sintering process using polymer nanocomposites. In: Proceedings of SAMPE 2012 ISSE, Baltimore, MD, 21–24 May 2012

  16. Fornes TD, Yoon PJ, Hunter DL et al (2002) Effect of organoclay structure on nylon 6 nanocomposite morphology and properties. Polymer 43:5915–5933

    Article  Google Scholar 

  17. Huang S, Wang M, Liu T et al (2009) Morphology, thermal, and rheological behavior of nylon 11/multi-walled carbon nanotube nanocomposites prepared by melt compounding. Polym Eng Sci 49:1063–1068

    Article  Google Scholar 

  18. Gaikwad S, Tate JS, Theodoropoulou N, Koo JH (2013) Electrical and mechanical properties of PA11 blended with nanographene platelets using industrial twin-screw extruder for selective laser sintering. J Compos Mater 47:2973–2986. doi:10.1177/0021998312460560

    Article  Google Scholar 

  19. Lao SC, Yong W, Nguyen K et al (2010) Flame-retardant polyamide 11 and 12 nanocomposites: processing, morphology, and mechanical properties. J Compos Mater 44:2933–2951

    Article  Google Scholar 

  20. Markarian J (2005) Flame retardants for polyamides—new developments and processing concerns. Plast Addit Compd 7:22–25. doi:10.1016/S1464-391X(05)00357-0

    Article  Google Scholar 

  21. Schmitt E (2007) Phosphorus-based flame retardants for thermoplastics. Plast Addit Compd 9:26–30. doi:10.1016/S1464-391X(07)70067-3

    Article  Google Scholar 

  22. Waaijers SL, Kong D, Hendriks HS et al (2013) Persistence, bioaccumulation, and Toxicity of Halogen-free flame retardants. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology. Springer, New York, pp 1–71

  23. Lao SC, Wu C, Moon TJ et al (2009) Flame-retardant polyamide 11 and 12 nanocomposites: thermal and flammability properties. J Compos Mater 43:1803–1818

    Article  Google Scholar 

  24. Underwriters Laboratories (1996) UL-94: Tests for flammability of plastic materials for parts in devices and appliances.

  25. Guo B, Zou Q, Lei Y, Jia D (2009) Structure and performance of polyamide 6/halloysite nanotubes nanocomposites. Polym J 41:835–842

    Article  Google Scholar 

  26. Hedicke-Höchstötter K, Lim GT, Altstädt V (2009) Novel polyamide nanocomposites based on silicate nanotubes of the mineral halloysite. Compos Sci Technol 69:330–334

    Article  Google Scholar 

  27. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B 4:323–328. doi:10.1002/pol.1966.110040504

    Article  Google Scholar 

  28. Hao A, Zhao H, Chen JY (2013) Kenaf/polypropylene nonwoven composites: the influence of manufacturing conditions on mechanical, thermal, and acoustical performance. Compos Part B Eng 54:44–51

    Article  Google Scholar 

  29. Jiang W, Sun L, Hao A et al (2012) Nano-particles modified cellulose films regenerated from ionic liquid solutions. J Nanostructured Polym Nanocomposites 8:71–77

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank KAI, LLC for sponsoring this project; and Dr. G. Wissler of 21st Century Polymers Inc. for preparing the formulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph H. Koo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, A., Wong, I., Wu, H. et al. Mechanical, thermal, and flame-retardant performance of polyamide 11–halloysite nanotube nanocomposites. J Mater Sci 50, 157–167 (2015). https://doi.org/10.1007/s10853-014-8575-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8575-7

Keywords

Navigation