Skip to main content
Log in

Phase transformation behavior of zinc metastannates obtained by aqueous precipitation at different temperatures

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Phase transformation studies in ZnO–SnO2 system from zinc metastannate (ZnSnO3) to zinc orthostannate (Zn2SnO4) with annealing temperature are reported. Non-centrosymmetric oxides show unique symmetry dependent and spontaneous polarization properties, which are technologically important. ZnSnO3 particles were synthesized by a simple aqueous synthesis at low temperatures designed with the assistance of potential–pH diagrams. ZnSnO3 particles synthesized at 4 °C are more porous losing the ilmenite structure upon annealing at 200 °C, while the other samples prepared at higher temperatures (25–65 °C) becomes amorphous at 300 °C. The phase transformation into the inverse spinel orthostannate phase occurs around 750 °C in all the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wu JM, Xu C, Zhang Y, Wang ZL (2012) Lead-free nanogenerator made from single ZnSnO3 microbelt. ACS Nano 6(5):4335–4340. doi:10.1021/nn300951d

    Article  Google Scholar 

  2. Son JY, Lee G, Jo M-H, Kim H, Jang HM, Shin Y-H (2009) Heteroepitaxial ferroelectric ZnSnO3 thin film. J Am Chem Soc 131(24):8386–8387. doi:10.1021/ja903133n

    Article  Google Scholar 

  3. Mihaiu S, Atkinson I, Mocioiu O, Toader A, Tenea E, Zaharescu M (2011) Phase formation mechanism in the ZnO–SnO2 binary system. Rev Roum Chim 56(6):465–472

    Google Scholar 

  4. Rajachidambaram JS, Sanghavi S, Nachimuthu P, Shutthanandan V, Varga T, Flynn B, Thevuthasan S, Herman GS (2012) Characterization of amorphous zinc tin oxide semiconductors. Mater Res Soc 27(17):2309–2317. doi:10.1557/jmr.2012.170

    Article  Google Scholar 

  5. Young DL, Williamson DL, Coutts TJ (2002) Structural characterization of zinc stannate thin films. J Appl Phys 91(3):1464–1471. doi:10.1063/1.1429793

    Article  Google Scholar 

  6. Tan B, Toman E, Li Y, Wu Y (2007) Zinc stannate (Zn2SnO4) dye-sensitized solar cells. J Am Chem Soc 129(14):4162–4163. doi:10.1021/ja070804f

    Article  Google Scholar 

  7. Belliard F, Connor PA, Irvine JTS (2000) Novel tin oxide-based anodes for Li-ion batteries. Solid State Ionics 135(1–4):163–167. doi:10.1016/S0167-2738(00)00296-4

    Article  Google Scholar 

  8. Rong A, Gao XP, Li GR, Yan TY, Zhu HY, Qu JQ, Song DY (2006) Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery. J Phys Chem B 110(30):14754–14760. doi:10.1021/jp062875r

    Article  Google Scholar 

  9. Alpuche-Aviles MA, Wu Y (2009) Photoelectrochemical study of the band structure of Zn2SnO4 prepared by the hydrothermal method. J Am Chem Soc 131(9):3216–3224. doi:10.1021/ja806719x

    Article  Google Scholar 

  10. Mikroyannidis JA, Suresh P, Roy MS, Sharma GD (2010) Triphenylamine- and benzothiadiazole-based dyes with multiple acceptors for application in dye-sensitized solar cells. J Power Sources 195(9):3002–3010. doi:10.1016/j.jpowsour.2009.10.107

    Article  Google Scholar 

  11. Miyauchi M, Liu Z, Zhao Z-G, Anandan S, Hara K (2010) Single crystalline zinc stannate nanoparticles for efficient photo-electrochemical devices. Chem Commun 46(9):1529–1531. doi:10.1039/b921010e

    Article  Google Scholar 

  12. Sivapunniyam A, Wiromrat N, Myint MTZ, Dutta J (2011) High-performance liquefied petroleum gas sensing based on nanostructures of zinc oxide and zinc stannate. Sens Actuators B 157(1):232–239. doi:10.1016/j.snb.2011.03.055

    Article  Google Scholar 

  13. Zeng Y, Zhang T, Fan H, Fu W, Lu G, Sui Y, Yang H (2009) One-pot synthesis and gas-sensing properties of hierarchical ZnSnO3 nanocages. J Phys Chem C 113(44):19000–19004. doi:10.1021/jp905230h

    Article  Google Scholar 

  14. Jiang Y-Q, Chen X-X, Sun R, Xiong Z, Zheng L-S (2011) Hydrothermal syntheses and gas sensing properties of cubic and quasi-cubic Zn2SnO4. Mater Chem Phys 129(1–2):53–61. doi:10.1016/j.matchemphys.2011.03.055

    Article  Google Scholar 

  15. Huang J, Xu X, Gu C, Wang W, Geng B, Sun Y, Liu J (2012) Size-controlled synthesis of porous ZnSnO3 cubes and their gas-sensing and photocatalysis properties. Sens Actuators B 171–172:572–579. doi:10.1016/j.snb.2012.05.036

    Article  Google Scholar 

  16. Wu X-H, Wang Y-D, Tian Z-H, Liu H-L, Zhou Z-L, Li Y-F (2002) Study on ZnSnO3 sensitive material based on combustible gases. Solid-State Electron 46(5):715–719. doi:10.1016/S0038-1101(01)00310-0

    Article  Google Scholar 

  17. Gou H, Zhang J, Li Z, Wang G, Gao F, Ewing RC, Lian J (2011) Energetic stability, structural transition, and thermodynamic properties of ZnSnO3. Appl Phys Lett 98(9):091914. doi:10.1063/1.3562013

    Article  Google Scholar 

  18. Shen X, Shen J, You SJ, Yang LX, Tang LY, Li YC, Liu J, Yang H, Zhu K, Liu YL, Zhou WY, Jin CQ, Yu RC, Xie SS (2009) Phase transition of Zn2SnO4 nanowires under high pressure. J Appl Phys 106(11):113523–113525. doi:10.1063/1.3268460

    Article  Google Scholar 

  19. Harvey SP, Poeppelmeier KR, Mason TO (2008) Subsolidus phase relationships in the ZnO–In2O3–SnO2 system. J Am Ceram Soc 91(11):3683–3689. doi:10.1111/j.1551-2916.2008.02686.x

    Article  Google Scholar 

  20. Cao Y, Jia D, Zhou J, Sun Y (2009) Simple solid-state chemical synthesis of ZnSnO3 nanocubes and their application as gas sensors. Eur J Inorg Chem 2009(27):4105–4109. doi:10.1002/ejic.200900146

    Article  Google Scholar 

  21. Baruah S, Dutta J (2011) Zinc stannate nanostructures: hydrothermal synthesis. Sci Technol Adv Mater 12:013004

    Article  Google Scholar 

  22. Fan H, Zeng Y, Xu X, Lv N, Zhang T (2011) Hydrothermal synthesis of hollow ZnSnO3 microspheres and sensing properties toward butane. Sens Actuators B 153(1):170–175. doi:10.1016/j.snb.2010.10.026

    Article  Google Scholar 

  23. Xu J, Jia X, Lou X, Shen J (2006) One-step hydrothermal synthesis and gas sensing property of ZnSnO3 microparticles. Solid-State Electron 50(3):504–507. doi:10.1016/j.sse.2006.02.001

    Article  Google Scholar 

  24. Al-Hinai AT, Al-Hinai MH, Dutta J (2014) Application of Eh-pH diagram for room temperature precipitation of zinc stannate microcubes in an aqueous media. Mater Res Bull 49:645–650. doi:10.1016/j.materresbull.2013.10.011

    Article  Google Scholar 

  25. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113

    Article  Google Scholar 

  26. Zhang G, Liu N, Ren Z, Yang B (2011) Synthesis of high-purity SnO2 nanobelts by using exothermic reaction. J Nanomater. doi:10.1155/2011/526094

    Google Scholar 

  27. Tang W, Wang J, Yao P, Li X (2014) A microscale formaldehyde gas sensor based on Zn2SnO4/SnO2 and produced by combining hydrothermal synthesis with post-synthetic heat treatment. J Mater Sci 49(3):1246–1255. doi:10.1007/s10853-013-7808-5

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Department of Chemistry at College of Science and the TRC Chair in Nanotechnology, Sultan Qaboos University, Oman. The authors would like to thank Mr. Ibrahim Al-Khusaibi from Central Applied and Analytical Research Unit (CAARU, College of Science) for his kind assistance in Scanning Electron Microscope imaging and Mr. Adur Rahman Al-Nabhani for his help in the Transmission Electron microscope imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Dutta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hinai, M.H., Al-Hinai, A.T. & Dutta, J. Phase transformation behavior of zinc metastannates obtained by aqueous precipitation at different temperatures. J Mater Sci 49, 7282–7289 (2014). https://doi.org/10.1007/s10853-014-8437-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8437-3

Keywords

Navigation