Skip to main content
Log in

Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanofluids perform a crucial role in the development of newer technologies ideal for industrial purposes. In this study, Nitrogen-doped graphene (NDG) nanofluids, with varying concentrations of nanoparticles (0.01, 0.02, 0.04, and 0.06 wt%) were prepared using the two-step method in a 0.025 wt% Triton X-100 (as a surfactant) aqueous solution as a base. Stability, zeta potential, thermal conductivity, viscosity, specific heat, and electrical conductivity of nanofluids containing NDG particles were studied. The stability of the nanofluids was investigated by UV–vis over a time span of 6 months and concentrations remain relatively constant while the maximum relative concentration reduction was 20 %. The thermal conductivity of nanofluids was increased with the particle concentration and temperature, while the maximum enhancement was about 36.78 % for a nanoparticle loading of 0.06 wt%. These experimental results compared with some theoretical models including Maxwell and Nan’s models and observed a good agreement between Nan’s model and the experimental results. Study of the rheological properties of NDG nanofluids reveals that it followed the Newtonian behaviors, where viscosity decreased linearly with the rise of temperature. It has been observed that the specific heat of NDG nanofluid reduced gradually with the increase of concentration of nanoparticles and temperature. The electrical conductivity of the NDG nanofluids enhanced significantly due to the dispersion of NDG in the base fluid. This novel type of fluids demonstrates an outstanding potential for use as innovative heat transfer fluids in medium-temperature systems such as solar collectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

CNT:

Carbon nanotube

c p :

Specific heat

c p,nf :

Specific heat capacities of nanofluid

c p,np :

Specific heat capacities of nanoparticle

c p,bf :

Specific heat capacities of base fluid

EG:

Ethylene glycol

k bf :

Thermal conductivity based fluid

k nf :

Thermal conductivity nanofluids

k p :

Thermal conductivity of the particle

MWNTs:

Multi-walled carbon nanotubes

NDG:

Nitrogen-doped graphene

FESEM:

Field emission scanning electron microscopy

SWNTs:

Single-walled carbon nanotubes

TEM:

Transmission electron microscope

t:

Time

wt%:

Weight percentage

XRD:

X-ray diffraction

2D:

Two-dimensional

ϕ :

Volume fraction

ρ nf :

Densities of nanofluid

ρ np :

Densities of nanoparticles

ρ bf :

Densities of base fluid,

ɛ :

Molar absorptivity, L (mol−1 cm−1)

μ :

Electrophoretic mobility

η :

Viscosity

D :

Dielectric constant of the liquid in the boundary layer

References

  1. LotfizadehDehkordi B et al (2013) Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS. Heat Mass Transf 49(8):1109–1115

    Article  Google Scholar 

  2. Choi SUS, Eastman J (1995) Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab, Illinois, pp 99–105

    Google Scholar 

  3. Hassan M et al (2013) Numerical study of entropy generation in a flowing nanofluid used in micro-and minichannels. Entropy 15(1):144–155

    Article  Google Scholar 

  4. Azizi-Toupkanloo H, Goharshadi EK, Nancarrow P (2013) Structural, electrical, and rheological properties of palladium/silver bimetallic nanoparticles prepared by conventional and ultrasonic-assisted reduction methods. Adv Powder Technol 25(2):801–810

    Article  Google Scholar 

  5. Goharshadi EK, Azizi-Toupkanloo H (2013) Silver colloid nanoparticles: ultrasound-assisted synthesis, electrical and rheological properties. Powder Technol 237:97–101

    Article  Google Scholar 

  6. Ganguly S, Sikdar S, Basu S (2009) Experimental investigation of the effective electrical conductivity of aluminum oxide nanofluids. Powder Technol 196(3):326–330

    Article  Google Scholar 

  7. Minea AA, Luciu RS (2012) Investigations on electrical conductivity of stabilized water based Al2O3 nanofluids. Microfluid Nanofluid 13(6):977–985

    Article  Google Scholar 

  8. Zhi C et al (2011) Highly thermo-conductive fluid with boron nitride nanofillers. ACS Nano 5(8):6571–6577

    Article  Google Scholar 

  9. Sundar LS et al (2014) Enhanced thermal conductivity and viscosity of nanodiamond-nickel nanocomposite nanofluids. Sci Rep 4. doi:10.1038/srep04039

  10. Yeganeh M et al (2010) Volume fraction and temperature variations of the effective thermal conductivity of nanodiamond fluids in deionized water. Int J Heat Mass Transf 53(15–16):3186–3192

    Article  Google Scholar 

  11. Lee KJ, Yoon SH, Jang J (2007) Carbon nanofibers: a novel nanofiller for nanofluid applications. Small 3(7):1209–1213

    Article  Google Scholar 

  12. Dongxiao H et al (2011) Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Res Lett 6:457

    Article  Google Scholar 

  13. Nasiri A et al (2012) Effect of CNT structures on thermal conductivity and stability of nanofluid. Int J Heat Mass Transf 55(5–6):1529–1535

    Article  Google Scholar 

  14. Nanda J et al (2008) Thermal conductivity of single-wall carbon nanotube dispersions: role of interfacial effects. J Phys Chem C 112(3):654–658

    Article  Google Scholar 

  15. Assael M et al (2004) Thermal conductivity of suspensions of carbon nanotubes in water. Int J Thermophys 25(4):971–985

    Article  Google Scholar 

  16. Chen L, Xie H, Yu W (2012) Multi-walled carbon nanotube/silver nanoparticles used for thermal transportation. J Mater Sci 47(14):5590–5595. doi:10.1007/s10853-012-6451-x

    Article  Google Scholar 

  17. Yang Y et al (2005) Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int J Heat Mass Transf 48(6):1107–1116

    Article  Google Scholar 

  18. Lee SW, Kim KM, Bang IC (2013) Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid. Int J Heat Mass Transf 65:348–356

    Article  Google Scholar 

  19. Yu W et al (2011) Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys Lett A 375(10):1323–1328

    Article  Google Scholar 

  20. Zheng R et al (2011) Thermal percolation in stable graphite suspensions. Nano Lett 12(1):188–192

    Article  Google Scholar 

  21. Mehrali M et al (2014) Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res Lett 9(1):1–12

    Article  Google Scholar 

  22. Lee G-J, Rhee CK (2014) Enhanced thermal conductivity of nanofluids containing graphene nanoplatelets prepared by ultrasound irradiation. J Mater Sci 49(4):1506–1511. doi:10.1007/s10853-013-7831-6

    Article  Google Scholar 

  23. Baby TT, Ramaprabhu S (2011) Synthesis and nanofluid application of silver nanoparticles decorated graphene. J Mater Chem 21(26):9702–9709

    Article  Google Scholar 

  24. Hordy N et al (2014) High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors. Sol Energy 105:82–90

    Article  Google Scholar 

  25. Özerinç S, Kakaç S, Yazıcıoğlu AG (2010) Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid 8(2):145–170

    Article  Google Scholar 

  26. Togun H et al (2014) Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step. Appl Math Comput 239:153–170

    Article  Google Scholar 

  27. Moghaddam MB et al (2013) Preparation, characterization, and rheological properties of graphene–glycerol nanofluids. Chem Eng J 231:365–372

    Article  Google Scholar 

  28. Mehrali M et al (2013) Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials. Energy 58:628–634

    Article  Google Scholar 

  29. Mehrali M et al (2013) Preparation and characterization of palmtic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material. Appl Therm Eng 61(3):633–640

    Article  Google Scholar 

  30. Novoselov K et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  Google Scholar 

  31. Kroto H, Heath J, O’Brien S et al (1985) C60: Buckminsterfullerene. Nature 3(18):162–163

    Article  Google Scholar 

  32. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  Google Scholar 

  33. Rao CNR, Sood AK (2013) Graphene: synthesis, properties, and phenomena. Wiley-VCH, Weinheim

    Google Scholar 

  34. Wehling T et al (2008) Molecular doping of graphene. Nano Lett 8(1):173–177

    Article  Google Scholar 

  35. Li N et al (2010) Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48(1):255–259

    Article  Google Scholar 

  36. Wei D et al (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752–1758

    Article  Google Scholar 

  37. Deng D et al (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23(5):1188–1193

    Article  Google Scholar 

  38. Li X et al (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131(43):15939–15944

    Article  Google Scholar 

  39. Wakeland S et al (2010) Production of graphene from graphite oxide using urea as expansion–reduction agent. Carbon 48(12):3463–3470

    Article  Google Scholar 

  40. Mehrali M et al. (2014) Synthesis, mechanical properties and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites. ACS Appl Mater Interfaces 6(6):3947–3962. doi:10.1021/am500845x

  41. Guo H-L et al (2013) Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents. J Mater Chem A 1(6):2248–2255

    Article  Google Scholar 

  42. Lu Y et al (2013) Synthesis and supercapacitor performance studies of N-doped graphene materials using o-phenylenediamine as the double-N precursor. Carbon 63:508–516

    Article  Google Scholar 

  43. Panchakarla LS et al (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater 21(46):4726–4730

    Google Scholar 

  44. Yousefi T et al (2012) An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector. Sol Energy 86(2):771–779

    Article  Google Scholar 

  45. Sun Z et al (2013) High-yield exfoliation of graphite in acrylate polymers: a stable few-layer graphene nanofluid with enhanced thermal conductivity. Carbon 64:288–294

    Article  Google Scholar 

  46. Mehrali M et al (2014) Facile synthesis of calcium silicate hydrate using sodium dodecyl sulfate as a surfactant assisted by ultrasonic irradiation. Ultrason Sonochem 21(2):735–742

    Article  Google Scholar 

  47. Goharshadi EK et al (2009) Ultrasound-assisted green synthesis of nanocrystalline ZnO in the ionic liquid [hmim][NTf2]. Ultrason Sonochem 16(1):120–123

    Article  Google Scholar 

  48. Jiang L, Gao L, Sun J (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci 260(1):89–94

    Article  Google Scholar 

  49. Hagen KD (1999) Heat transfer with applications. Prentice Hall Englewood Cliffs, New Jersey

    Google Scholar 

  50. Ramires ML et al (1995) Standard reference data for the thermal conductivity of water. J Phys Chem Ref Data 24:1377

    Article  Google Scholar 

  51. Buongiorno J et al. (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106(9):094312–094312-14.

  52. Abareshi M et al (2010) Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J Magn Magn Mater 322(24):3895–3901

    Article  Google Scholar 

  53. Yang P et al (2013) Numerical investigation on thermal conductivity and thermal rectification in graphene through nitrogen-doping engineering. Appl Phys A 112(3):759–765

    Article  Google Scholar 

  54. Hwang Y et al (2007) Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta 455(1):70–74

    Article  Google Scholar 

  55. Wen D, Ding Y (2004) Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). J Thermophys Heat Transfer 18(4):481–485

    Article  Google Scholar 

  56. Marquis F, Chibante L (2005) Improving the heat transfer of nanofluids and nanolubricants with carbon nanotubes. JOM 57(12):32–43

    Article  Google Scholar 

  57. Amrollahi A, Hamidi A, Rashidi A (2008) The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid). Nanotechnology 19(31):315701

    Article  Google Scholar 

  58. Wang B, Hao J, Li H (2013) Remarkable improvements in the stability and thermal conductivity of graphite/ethylene glycol nanofluids caused by a graphene oxide percolation structure. Dalton Trans 42(16):5866–5873

    Article  Google Scholar 

  59. Sen Gupta S et al. (2011) Thermal conductivity enhancement of nanofluids containing graphene nanosheets. J Appl Phys 110(8):084302–084302-6.

  60. Sarojini KGK et al (2013) Electrical conductivity of ceramic and metallic nanofluids. Colloids Surf A 417:39–46

    Article  Google Scholar 

Download references

Acknowledgements

This research work has been financially supported by High Impact Research (MOHE-HIR) grant UM.C/625/1/HIR/MOHE/ENG/21-(D000021-16001), UMRG grant RP012D-13AET. The author wishes to thank the Bright Sparks unit (University of Malaya) for additional financial support.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Mehrali, Emad Sadeghinezhad or S. N. Kazi.

Additional information

The manuscript was written through the contributions of all authors. All authors read and approved the final manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1465 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrali, M., Sadeghinezhad, E., Tahan Latibari, S. et al. Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids. J Mater Sci 49, 7156–7171 (2014). https://doi.org/10.1007/s10853-014-8424-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8424-8

Keywords

Navigation