Skip to main content
Log in

Prussian blue modified Fe3O4 nanoparticles for Cs detoxification

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fe3O4 nanoparticles were surface modified with Prussian blue (PB) and the nanoparticles were used for the removal of cesium (Cs) ion. The attachment of PB with the Fe3O4 and their morphology were explained based on the studies by transmission electron microscope and BET measurements. The Cs ion adsorption studies have shown that the Cs removal efficiency reached maximum within 120 min. The adsorption kinetics studies using Lagergren pseudo-first-order kinetic model suggest the values of the amount of metal ion adsorbed at equilibrium (q e) and adsorption rate constant (k 1) as 22 mg/g and 0.015 min−1, respectively. The capture efficiency of the prepared nanoparticles was studied by varying the flow channel diameter, applied magnetic field, and the fluid flow velocity. The study suggests that PB-Fe3O4 nanoparticles could be used for the detoxification of Cs where the flow velocity is in the range of few tens of cm/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Avery SV (1996) Fate of caesium in the environment: distribution between the abi-otic and biotic components of aquatic and terrestrial ecosystems. J Environ Radioact 30:139–171

    Article  Google Scholar 

  2. Faustino PJ, Yang Y, Progar JJ, Brownell CR, Sadrieh N, May JC, Leutzinger E et al (2008) Quantitative determination of cesium binding to ferrichexacyanoferrate: Prussian blue. J Pharm Biomed 47:114–125

    Article  Google Scholar 

  3. Pearce J (1994) Studies of any toxicological effects of Prussian blue compounds in mammals—A review. Food Chem Toxicol 32:577–582

    Article  Google Scholar 

  4. Hu M, Furukawa S, Ohtani R, Sukegawa H, Nemoto Y, Reboul J, Kitagawa S, Yamauchi Y (2012) Synthesis of Prussian blue nanoparticles with a hollow interior by controlled chemical etching. Angew Chem Int Ed 51:984–988

    Article  Google Scholar 

  5. Lian HY, Hu M, Liu CH, Yamauchi Y, Wu KCW (2012) Highly biocompatible, hollow coordination polymer nanoparticles as cisplatin carriers for efficient intracellular drug delivery. Chem Commun 48:5151–5153

    Article  Google Scholar 

  6. Hu M, Belik A, Imura M, Mibu K, Tsujimoto Y, Yamauchi Y (2012) Synthesis of superparamagnetic nanoporous iron oxide particles with hollow interiors by using Prussian blue coordination polymers. Chem Mater 24:2698–2707

    Article  Google Scholar 

  7. Chiang YD, Hu M, Kamachi Y, Ishihara S, Takai K, Tsujimoto Y, Ariga K, Wu KCW, Yamauchi Y (2013) Rational design and synthesis of cyano-bridged coordination polymers with precise control of particle size from 20 to 500 nm. Eur J Inorg Chem 2013:3141–3145

    Article  Google Scholar 

  8. Hu M, Ishihara S, Ariga K, Imura M, Yamauchi Y (2013) Kinetically controlled crystallization for synthesis of monodispersed coordination polymer nanocubes and their self-assembly to periodic arrangements. Chem Eur J 19:1882–1885

    Article  Google Scholar 

  9. Hu M, Belik AA, Imura M, Yamauchi Y (2013) Tailored design of multiple nanoarchitectures in metal-cyanide hybrid coordination polymers. J Am Chem Soc 135:384–391

    Article  Google Scholar 

  10. Hu M, Yamauchi Y (2011) Synthesis of a titanium-containing Prussian-blue analogue with a well-defined cube structure and its thermal conversion into a nanoporous titanium–iron-based oxide. Chem Asian J 6:2282–2286

    Article  Google Scholar 

  11. Thompson DF, Church CO (2001) Prussian blue for treatment of radiocesium poisoning. Pharmacotherapy 21:1364–1367

    Article  Google Scholar 

  12. Barton GB, Hepworth JL, McClanahan ED, Moore RL, VanTuyl HH (1958) Chemical processing wastes, recovering fission products. Ind Eng Chem 50:212–216

    Article  Google Scholar 

  13. Ishizaki M, Akiba S, Ohtani A, Hoshi Y, Ono K, Matsuba M, Togashi T, Kananizuka K et al (2013) Proton-exchange mechanism of specific Cs+ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules. Dalton Trans 42:16049–16055

    Article  Google Scholar 

  14. Namiki Y, Namiki T, Ishii Y, Koido S, Nagase Y, Tsubota A, Tada N, Kitamoto Y (2012) Inorganic-organic magnetic nanocomposites for use in preventive medicine: a rapid and reliable elimination system for cesium. Pharm Res 29:1404–1418

    Article  Google Scholar 

  15. Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, Timchalk C, Yantasee W (2010) Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater 182:225–231

    Article  Google Scholar 

  16. Delchet C, Tokarev A, Dumail X, Toquer G, Barre Y, Guari Y, Guerin C, Larionova J, Grandjean A (2012) Extraction of radioactive cesium using innovative functionalized porous materials. RSC Adv 2:5707–5716

    Article  Google Scholar 

  17. Lin Y, Fryxell GE, Wu H, Englhard M (2001) Selective sorption of cesium using self-assembled monolayers on mesoporous supports. Environ Sci Technol 35:3962–3966

    Article  Google Scholar 

  18. Parab H, Sudersanan M (2010) Engineering a lignocellulosic biosorbent–Coir pith for removal of cesium from aqueous solutions: equilibrium and kinetic studies. Water Res 44:854–860

    Article  Google Scholar 

  19. Chang CY, Chau LK, Hu WP, Wang CY, Liao JH (2008) Nickel hexacyanoferrate multilayers on functionalized mesoporous silica supports for selective sorption and sensing of cesium. Microporous Mesoporous Mat 109:505–512

    Article  Google Scholar 

  20. Rassat SD, Sukamto JH, Orth RJ, Lilga MA, Hallen RT (1999) Development of an electrically switched ion exchange process for selective ion separations. Sep Purif Technol 15:207–222

    Article  Google Scholar 

  21. Lilga MA, Orth RJ, Sukamto JPH, Rassat SD, Genders JD, Gopal R (2001) Cesium separation using electrically switched ion exchange. Sep Purif Technol 24:451–466

    Article  Google Scholar 

  22. Chen BW, Xia XH (2007) Highly stable nickel hexacyanoferrate nanotubes for electrically switched ion exchange. Adv Funct Mater 17:2943–2948

    Article  Google Scholar 

  23. Lilga MA, Orth RJ, Sukamto JPH, Haight SM, Schwartz DT (1997) Metal ion separations using electrically switched ion exchange. Sep Purif Technol 11:147–158

    Article  Google Scholar 

  24. Chen R, Tanaka H, Kawamoto T, Asai M, Fukushima C, Kurihara M, Watanabe M, Arisaka M, Nankawa T (2012) Preparation of a film of copper hexacyanoferrate nanoparticles for electrochemical removal of cesium from radioactive wastewater. Electrochem Commun 25:23–25

    Article  Google Scholar 

  25. Prout WE, Russell ER, Grob HJ (1965) Ion exchange absorption of cesium by potassium hexacyanocobalt (II) ferrate (II). J Inorg Nucl Chem 27:473–479

    Article  Google Scholar 

  26. Chen H, Kaminski MD, Rosengart AJ (2008) 2D modeling and preliminary in vitro investigation of a prototype high gradient magnetic separator for biomedical applications. Med Eng Phys 30:1–8

    Article  Google Scholar 

  27. Falkenhagen D, Brandl M, Hartmann J, Kellner KH, Posnicek T, Weber V (2006) Fluidized bed adsorbent systems for extracorporeal liver support. Ther Apher Dial 10:154–159

    Article  Google Scholar 

  28. Brandl M, Mayer M, Hartmann J, Posnicek T, Fabian C, Falkenhagen D (2010) Theoretical analysis of ferromagnetic microparticles in streaming liquid under the influence of external magnetic forces. J Magn Magn Mater 322:2454–2464

    Article  Google Scholar 

  29. Berry CC, Curtis ASG (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D 36:R198–R206

    Article  Google Scholar 

  30. Iacob G, Rotariu O, Strachan NJC, Häfeli UO (2004) Magnetizable needles and wires-modeling an efficient way to target magnetic microspheres in vivo. Biorheology 41:599–612

    Google Scholar 

  31. Ritter JA, Ebner AD, Daniel KD, Stewart KL (2004) Application of high gradient magnetic separation principles to magnetic drug targeting. J Magn Magn Mater 280:184–201

    Article  Google Scholar 

  32. Avilės MO, Ebner AD, Chen H, Rosengart AJ, Kaminski MD, Ritter JA (2005) Theoretical analysis of a transdermal ferromagnetic implant for retention of magnetic drug carrier particles. J Magn Magn Mater 293:605–615

    Article  Google Scholar 

  33. Chen H, Ebner AD, Kaminski MD, Rosengart AJ, Ritter JA (2005) Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent—2: parametric study with multi-wire two-dimensional model. J Magn Magn Mater 293:616–632

    Article  Google Scholar 

  34. Tang SCN and Lo (2013) IMC Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613–2632

    Article  Google Scholar 

  35. Arun T, Prakash K, Justin Joseyphus R (2013) Synthesis and magnetic properties of prussian blue modified Fe nanoparticles. J Magn Magn Mater 345:100–105

    Article  Google Scholar 

  36. Arun T, Prakash K, Kuppusamy R, Justin Joseyphus R (2013) Magnetic properties of Prussian blue modified Fe3O4 nanocubes. J Phys Chem Solids 74:1761–1768

    Article  Google Scholar 

  37. Kaye SS, Long JR (2007) The role of vacancies in the hydrogen storage properties of Prussian blue analogues. Catal Today 120:311–316

    Article  Google Scholar 

  38. Kaye SS, Long JR (2005) Hydrogen storage in the dehydrated Prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe Co, Ni, Cu, Zn). J Am Chem Soc 127:6506–6507

    Article  Google Scholar 

  39. Ming H, Torad NLK, Chiang YD, Wu KCW, Yamauchi Y (2012) Size-and shape-controlled synthesis of Prussian blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process. Cryst Eng Comm 14:3387–3396

    Article  Google Scholar 

  40. Song C, Du JP, Zhao JH, Feng SA, Du GX, Zhu ZP (2009) Hierarchical porous core– shell carbon nanoparticles. Chem Mater 21:1524–1530

    Article  Google Scholar 

  41. Cho W, Lee HJ, Oh M (2008) Growth-controlled formation of porous coordination polymer particles. J Am Chem Soc 130:16943–16946

    Article  Google Scholar 

  42. Kobler J, Bein T (2008) Porous thin films of functionalized mesoporous silica nanoparticles. ACS Nano 2:2324–2330

    Article  Google Scholar 

  43. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  Google Scholar 

  44. Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem Mater 13:3169–3183

    Article  Google Scholar 

  45. Kim JO, Lee SM, Jeon C (2014) Adsorption characteristics of sericite for cesium ions from an aqueous solution. Chem Eng Res Des. doi:10.1016/j.cherd.2013.07.020

    Google Scholar 

  46. Lv K, Xiong LP, Luo YM (2013) Ion exchange properties of cesium ion sieve based on zirconium molybdopyrophosphate. Colloids Surf A 433:37–46

    Article  Google Scholar 

  47. Torad NL, Hu M, Imura M, Naito M, Yamauchi Y (2012) Large Cs adsorption capability of nanostructured Prussian blue particles with high accessible surface areas. J Mater Chem 22:18261–18267

    Article  Google Scholar 

  48. Lagergren S (1898) Zurtheorie der sogenannten adsorption gelösterstoffe. K Sven Vetenskapsakad Handl 24:1–39

    Google Scholar 

  49. Ho YS, McKay G (1999) Pseudo-second-order model for sorption processes. Process Biochem 34:451–465

    Article  Google Scholar 

  50. Thammawong C, Opaprakasit P, Tangboriboonrat P, Sreearunothai P (2013) Prussian blue modified magnetic oxide nanoparticles for removal of cesium from contaminated environment. J Nanopart Res 15:1689–1699

    Article  Google Scholar 

  51. Furlani EP, Ng KC (2006) Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys Rev 73:061919-1–06191910

    Google Scholar 

  52. Tang W, Su Y, Li Q, Gao S, Shang JK (2013) Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation. Water Res 47:3624–3634

    Article  Google Scholar 

  53. Shan C, Tong M (2013) Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe–Mn binary oxide. Water Res 47:3411–3421

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Science and Technology (DST), Govt. of India for financial assistance through (SR/FTP/ETA-11/2008), the FIST program (SR/FST/PSI-117/2007), and the nanomission project (SR/NM/NS-27/2008). The authors acknowledge Dr. S. Velmathi, Department of Chemistry, National Institute of Technology for the BET measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Justin Joseyphus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 2040 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arun, T., Justin Joseyphus, R. Prussian blue modified Fe3O4 nanoparticles for Cs detoxification. J Mater Sci 49, 7014–7022 (2014). https://doi.org/10.1007/s10853-014-8406-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8406-x

Keywords

Navigation