Skip to main content
Log in

Homogeneous and heterogeneous precipitation mechanisms in a binary Mg–Nd alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Parallel modes of precipitation mechanisms in an Mg–Nd alloy were revealed by examining an isothermally annealed high pressure die cast alloy at 177 °C for up to 100 h. Broadly, precipitate evolution was observed to occur concurrently on dislocations and within the surrounding α-Mg matrix. However, it was observed that the presence of dislocation accelerated the precipitate formation kinetics significantly. In contrast to the accepted precipitation pathway in the Mg–Nd system, i.e., SSSS → GP zones → β″ → β′ → β1 → β → βe, dislocations were found to preferentially facilitate the formation of β′ and β1 precipitates even at the very early stages (5 h) of annealing. Within the same time frame, a homogeneous distribution of Nd-rich pockets was observed throughout the α-Mg matrix, along with the β′ and β1 precipitates decorating dislocation lines. Results further indicate that these Nd-rich regions initiated precipitation within the parent α-Mg matrix. The formation of these Nd-rich pockets was explained on the basis of a miscibility gap in the α-Mg phase at 177 °C. Our results demonstrate that the presence of dislocations influence strongly the phase-transformation pathways in Mg-rare earth alloys by facilitating the formation of selective precipitate phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nie JF (2012) Precipitation and hardening in magnesium alloys. Metall Mater Trans A 43A:3891–3939

    Article  Google Scholar 

  2. Saito K, Hiraga K (2011) The structures of precipitates in an Mg-0.5at%Nd age-hardenable alloy studied by HAADF-STEM technique. Mater Trans 52:1860–1867

    Article  Google Scholar 

  3. Nie JF, Muddle BC (2000) Characterization of strengthening precipitate phases in a Mg–Y–Nd alloy. Acta Mater 48:1691–1703

    Article  Google Scholar 

  4. Mengucci P, Barucca G, Riontiono G, Lussana D, Nassazza M, Ferragut R, Aly EH (2008) A novel thermal treatment on a Mg–4.2Y–2.3Nd–0.6Zr (WE43) alloy. Mater Sci Eng A 479:37–44

    Article  Google Scholar 

  5. Choudhuri D, Meher S, Nag S, Dendge N, Hwang JY, Banerjee R (2013) Evolution of a honeycomb network of precipitates in a hot-rolled commercial Mg–Y–Nd–Zr alloy. Philos Mag Lett 93:395–404

    Article  Google Scholar 

  6. Bettles CJ, Gibson MA, Zhu SM (2009) Microstructure and mechanical behavior of an elevated temperature Mg-rare earth based alloy. Mater Sci Eng A 505:6–12

    Article  Google Scholar 

  7. Zhu S, Gibson MA, Easton MA, Nie JF, Bettles CJ (2009) Mater Sci Forum 618–619:453

    Article  Google Scholar 

  8. Easton MA, Gibson MA, Qiu D, Zhu SM, Grobner J, Schmid-Fetzer R, Nie JF, Zhang MX (2012) The role of crystallography and thermodynamics on phase selection in binary magnesium-rare earth (Ce of Nd) alloys. Acta Mater 60:4420–4430

    Article  Google Scholar 

  9. Chia TL, Easton MA, Zhu SM, Gibson MA, Birbilis N, Nie JF (2009) The effect of alloy composition on the microstructure and tensile properties of binary Mg-rare earth alloys. Intermetallics 17:481–490

    Article  Google Scholar 

  10. Choudhuri D, Dendge N, Nag S, Gibson MA, Banerjee R (2013) Precipitation in uniaxially stresses Mg–Nd alloys during creep testing. Metall Mater Trans A 44:2905–2909

    Article  Google Scholar 

  11. Yan J, Sun Y, Xue F, Xue S, Tao W (2008) Microstructure and mechanical properties in cast magnesium–neodymium binary alloys. Mater Sci Eng A 476:366–371

    Article  Google Scholar 

  12. Janik V, Yin DD, Wang QD, He SM, Chen CJ, Boehlert CJ (2011) The elevated-temperature mechanical behavior of peak-aged Mg–10Gd–3Y–0.4Zr. Mater Sci Eng A 528:3105–3112

    Article  Google Scholar 

  13. Ning ZL, Liu HH, Cao FY, Wang ST, Sun JF, Qian M (2013) The effect of grain size on the tensile and creep properties of Mg–2.6Nd–0.3Zn–xZr alloys at 250 °C. Mater Sci Eng A 560:163–169

    Article  Google Scholar 

  14. Luo A, Pekguleryuz MO (1994) Cast magnesium alloys for elevated temperature applications. J Mater Sci 29:5259–5271. doi:10.1007/BF01171534

    Article  Google Scholar 

  15. Mordike BL, Ebert T (2001) Magnesium–properties–applications–potential. Mater Sci Eng A 15:7–45

    Google Scholar 

  16. Zhu SM, Gibson MA, Easton MA, Nie JF (2010) The relationship between microstructure and creep resistance in die-cast magnesium rare-earth alloys. Scr Mater 63:698–703

    Article  Google Scholar 

  17. Okamoto HJ (2007) Mg–Nd. J Phase Equilib Diffus 28:405

    Article  Google Scholar 

  18. Sterling EA, Sinclair CW (2012) In: Poole WJ, Kainer KU (eds) Mg2012: 9th internal conference on magnesium alloys and their applications. TMS, Warrendale, pp 1061–1067

    Google Scholar 

  19. Brennan S, Bermudez K, Sohn Y (2012) In: Poole WJ, Kainer KU (eds) Mg2012: 9th internal conference on magnesium alloys and their applications. TMS, Warrendale, pp 417–421

    Google Scholar 

  20. Gault B, Moody MP, Cairney JM, Ringer SP (2012) Atom probe microscopy, 1st edn. Springer, New York

    Book  Google Scholar 

  21. Honma T, Ohkubo T, Kamado S, Hono K (2007) Effect of Zn additions on the age-hardening of Mg–2.0Gd–1.2Y–0.2Zr alloys. Acta Mater 55:4137–4150

    Article  Google Scholar 

  22. Hellman OC, Vandenbrouucke JA, Rusing J, Isheim D, Seidman DN (2000) Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc Microanal 6:437–444

    Google Scholar 

  23. Nag S, Banerjee R, Hwang JY, Harper M, Fraser HL (2009) Elemental partitioning between alpha and beta phases in the Ti–5Al–5Mo–5V–3Cr–0.5Fe (T-5553) alloy. Philos Mag 89:535–552

    Article  Google Scholar 

  24. Ng HP, Devaraj A, Nag S, Bettles CJ, Gibson M, Fraser HL, Muddle BC, Banerjee R (2011) Phase separation and formation of mega phase in the beta matrix of a Ti–V–Cu alloy. Acta Mater 59:2981–2991

    Article  Google Scholar 

  25. Porter DA, Easterling KE, Sherif MY (2008) Phase transformations in metals and alloys, 3rd edn. CRC Press, Taylor and Francis, Boca Raton, pp 290–295

    Google Scholar 

  26. Gorsse S, Hutchisin CR, Chevalier B, Nie JF (2005) Modeling the precipitation processes and strengthening mechanisms in a Mg–Al–Zn (AZ91) alloy. J Alloys Comp 392:253–262

    Article  Google Scholar 

  27. Du Z, Gui Z, Li C, Zhang W (2006) Thermodynamic modeling of the La–Mg–Y system and Mg-based alloys database. Rare Met 25:492–500

    Article  Google Scholar 

  28. Meng FG, Wang J, Liu HS, Liu LB, Jin ZP (2007) Experimental investigation and thermodynamic calculation of the phase relations in the Mg–Nd–Y ternary system. Mater Sci Eng A 454–455:266–273

    Article  Google Scholar 

  29. Grobner J, Schmid-Fetzer R (2010) Thermodynamic modeling of the Mg–Ce–Gd–Y. Scr Mater 63:674–679

    Article  Google Scholar 

  30. Niu C, Liu M, Li C, Du Z, Guo C (2010) Thermodynamic description on the miscibility gap of the Mg-based solid solution in the Mg–Zn, Mg–Nd and Mg–Zn–Nd systems. CALPHAD 43:428–433

    Article  Google Scholar 

  31. Qi HY, Huang GX, Bo H, Xu GL, Liu LB, Jin ZP (2011) Thermodynamic description of the Mg–Nd–Zn ternary system. J Alloys Comp 509:3274–3281

    Article  Google Scholar 

  32. Hampl M, Blawert C, Campos MRS, Hort N, Peng Q, Kainer KU, Schmid-Fetzer RJ (2013) Thermodynamic assessment and experimental study of the Mg–Gd alloys. J Alloys Comp 581:166–177

    Article  Google Scholar 

  33. Dinsdale AT (2006) SGTE data for pure elements

  34. Chou YT (1962) Interaction of parallel dislocations in a hexagonal crystal. J Appl Phys 9:2747–2751

    Article  Google Scholar 

  35. Hull D, Bacon DJ (2001) Introduction to dislocations, 4th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  36. Gao Y, Liu H, Shi R, Zhou N, Xu Z, Zhu YM, Nie JF, Wang Y (2012) Simulation study of precipitation in an Mg–Y–Nd alloy. Acta Mater 60:4819–4832

    Article  Google Scholar 

  37. Liu H, Gao Y, Liu JZ, Zhu YM, Wang Y, Nie JF (2013) A simulation study of the shape of β′ precipitates in Mg–Y and Mg–Gd alloys. Acta Mater 61:453–466

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the Center for Advanced Research and Technology (CART) at the University of North Texas. CAST Cooperative Research Centre (CAST CRC) was established under, and is supported in part by, the Australian Government’s Cooperative Research Centres scheme. MAG would like to acknowledge the technical assistance of Mrs. M. Gershenzon and Mr. A. Yob in the HPDC of the samples used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Banerjee.

Appendix

Appendix

Parameters used for thermodynamic modeling

Standard free energies as a function of temperature (T) for Mg (HCP_A3) and Nd (DHCP) [33]

$$ G_{\text{Mg}}^{0} = - 8367.34 + 143.675547 \times T - 26.1849782 \times T \times \log \left( T \right) + \left( {0.4858 \times 10^{ - 3} } \right) \times T^{2} - \left( {1.393669 \times 10^{ - 6} } \right) \times T^{3} + 78950/T, $$
$$ G_{\text{Nd}}^{0} = - 8402.93 + 111.10239 \times T - 27.0858 \times T \times \log \left( T \right) + \left( {0.556125 \times 10^{ - 3} } \right) \times T^{2} - \left( {2.6923 \times 10^{ - 6} } \right) \times T^{3} + 34887/T. $$

Interaction parameters used to describe the excess free energy (G excess) by Niu et al. [30]

$$ L_{0}^{{\alpha {\text{ - Mg}}}} = - 300 3. 300 \times { \exp }\left( { - 0.00 60 1 4\times T} \right), $$
$$ L_{1}^{{\alpha - {\text{Mg}}}} = 17928.198 \times \exp \left( { - 0.000617 \times T} \right), $$
$$ L_{2}^{{\alpha {\text{ - Mg}}}} = 4 5. 5 20 \times { \exp }\left( { - 0.000 6 9 9\times T} \right), $$
$$ L_{ 3}^{{\alpha {\text{ - Mg}}}} = 3 8 1 2. 5 5 5\times { \exp }\left( { - 0.00 1 1\times T} \right). $$

Stress field around edge dislocation in a hcp crystal structure [34]

Coordinate system of the following formulations is shown in Fig. 11a

$$ \sigma^{\text{edge}} = \left( {\begin{array}{*{20}c} {\sigma_{\text{xx}} } & {\sigma_{\text{xy}} } & 0 \\ {\sigma_{\text{yx}} } & {\sigma_{\text{yy}} } & 0 \\ 0 & 0 & {\sigma_{\text{zz}} } \\ \end{array} } \right). $$

Components of σ ij for an edge dislocation are given by

$$ \sigma_{{ {\text{xx}}}} = - \frac{{K_{\text{edge}} b_{\text{edge}} }}{2\pi }\zeta^{2} \frac{{y[\left( {C + 3} \right)x^{2} + \zeta^{2} y^{2} ]}}{{(x^{2} - \zeta^{2} y^{2} )^{2} + (C + 4)\zeta^{2} x^{2} y^{2} }}, $$
$$ \sigma_{{ {\text{yy}}}} = \frac{{K_{\text{edge}} b_{\text{edge}} }}{2\pi }\frac{{y\left( {x^{2} - \zeta^{2} y^{2} } \right)}}{{\left( {x^{2} - \zeta^{2} y^{2} } \right)^{2} + \left( {C + 4} \right)\zeta^{2} x^{2} y^{2} }}, $$
$$ \sigma_{zz} = \left( {\frac{{C_{12} C_{33} - C_{13}^{2} }}{{\overline{C}^{2} - C_{13}^{2} }}} \right)\sigma_{xx} + \left( {\frac{{C_{11} C_{13} - C_{12} C_{13} }}{{\overline{C}^{2} - C_{13}^{2} }}} \right)\sigma_{yy} , $$
$$ \sigma_{{ {\text{xy}}}} = \frac{{K_{\text{edge}} b_{\text{edge}} }}{2\pi }\frac{{y(x^{2} - \zeta^{2} y^{2} )}}{{(x^{2} - \zeta^{2} y^{2} )^{2} + (C + 4)\zeta^{2} x^{2} y^{2} }}, $$
$$ K_{\text{edge}} = \left( {\overline{C} + C_{13} } \right)\sqrt {\left[ {\frac{{C_{44} \left( {\overline{C} - C_{13} } \right)}}{{C_{33} \left( {\overline{C} + C_{13} + 2C_{44} } \right)}}} \right]} ,\quad \zeta^{2} = \sqrt {\frac{{C_{11} }}{{C_{13} }}} = (\overline{C} + C_{13} ),\quad \overline{C} = \sqrt {(C_{11} C_{33} )} , $$

where b edge is the Burgers vector. Elastic constants of Mg were obtained from Gao et al. [36]: C 11 = 63.5 GPa, C 12 = 24.85 GPa, C 13 = 19.33 GPa, C 33 = 20.0 GPa, and C 44 = 50.8 GPa. Note that edge dislocation stress fields have both dilatation (\( \sigma_{\text{mm}} = \frac{1}{3} [\sigma_{\text{xx}} + \sigma_{\text{yy}} + \sigma_{\text{yy}} ] \)) and shear (\( \sigma_{{ {\text{xy}}}} \)) componentss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhuri, D., Dendge, N., Nag, S. et al. Homogeneous and heterogeneous precipitation mechanisms in a binary Mg–Nd alloy. J Mater Sci 49, 6986–7003 (2014). https://doi.org/10.1007/s10853-014-8404-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8404-z

Keywords

Navigation