Skip to main content
Log in

Phase coexistence in Bi1−x Pr x FeO3 ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bi1−x Pr x FeO3 ceramics across the rhombohedral–orthorhombic phase boundary have been studied by X-ray diffraction, transmission electron microscopy, and differential scanning calorimetry. The structural phase transitions in Bi1−x Pr x FeO3 driven by doping concentration and temperature are significantly different from those in BiFeO3 compounds doped with other rare-earth elements. The features of the structural transformations have been discussed based on the specific character of the chemical bonds associated with praseodymium ions. The detailed study of the crystal structure evolution clarified the ranges of both single-phase and phase coexistence regions at different temperatures and dopant concentrations. For x = 0.125, compound extraordinary three-phase coexistence state has been observed in a narrow temperature range at about 400 °C. The results explicate driving forces of the structural transitions and elucidate the origin of the remarkable physical properties of BiFeO3-based compounds near the morphotropic phase boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kan D, Palova L, Anbusathaiah V, Cheng CJ, Fujino S, Nagarajan V, Rabe KM, Takeuchi I (2010) Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv Funct Mater 20:1108–1115

    Article  Google Scholar 

  2. Chu YH, Zhan Q, Yang C-H, Cruz MP, Martin LW, Zhao T, Yu P, Ramesh P, Joseph PT, Lin IN, Tian W, Schlom DG (2008) Low voltage performance of epitaxial BiFeO3 films on Si substrates through lanthanum substitution. Appl Phys Lett 92:102909–102911

    Article  Google Scholar 

  3. Yuan GL, Or SW, Liu JM, Liu ZG (2006) Structural transformation and ferroelectromagnetic behavior in single-phase Bi1−x Nd x FeO3 multiferroic ceramics. Appl Phys Lett 89:052905–052907

    Article  Google Scholar 

  4. Chen X, Hu G, Wu G, Yang C, Wang C, Fan S (2010) Large piezoelectric coefficient in Tb-doped BiFeO3 films. J Am Ceram Soc 93:948–950

    Article  Google Scholar 

  5. Karpinsky DV, Troyanchuk IO, Vidal JV, Sobolev NA, Kholkin AL (2011) Enhanced ferroelectric, magnetic and magnetoelectric properties of Bi1−x Ca x Fe1−x Ti x O3 solid solutions. Solid State Commun 151:536–540

    Article  Google Scholar 

  6. Le Bras G, Bonville P, Colson D, Forget A, Genand-Riondet N, Tourbot R (2011) Effect of La doping in the multiferroic compound BiFeO3. Phys B 406:1492–1495

    Article  Google Scholar 

  7. Karpinsky DV, Troyanchuk IO, Mantytskaya OS, Khomchenko OS, Kholkin AL (2011) Structural stability and magnetic properties of Bi1−x La(Pr) x FeO3 solid solutions. Solid State Commun 151:1686–1689

    Article  Google Scholar 

  8. Rusakov DA, Abakumov AM, Yamaura K, Van Belik AA, Tendeloo G, Takayama-Muromachi E (2010) Structural evolution of the BiFeO3−LaFeO3 system. Chem Mater 23:285–292

    Article  Google Scholar 

  9. Troyanchuk IO, Karpinsky DV, Bushinsky MV, Mantytskaya OS, Tereshko NV, Shut VN (2011) Phase transitions, magnetic and piezoelectric properties of rare-earth-substituted BiFeO3 ceramics. J Am Ceram Soc 94:4502–4506

    Article  Google Scholar 

  10. Troyanchuk IO, Karpinsky DV, Bushinsky MV et al (2011) Isothermal structural transitions, magnetization and large piezoelectric response in Bi1−x La x FeO3 perovskites. Phys Rev B 83:054109–054115

    Article  Google Scholar 

  11. Khomchenko VA, Karpinsky DV, Kholkin AL et al (2010) Rhombohedral-to-orthorhombic transition and multiferroic properties of Dy-substituted BiFeO3. J Appl Phys 108:074109–074113

    Article  Google Scholar 

  12. Zhang JX, He Q, Trassin M et al (2011) Microscopic origin of the giant ferroelectric polarization in tetragonal-like BiFeO3. Phys Rev Lett 107:147602–147605

    Article  Google Scholar 

  13. Jang HW, Ortiz D, Baek S-H et al (2009) Domain engineering for enhanced ferroelectric properties of epitaxial (001) BiFeO3 thin films. Adv Mater 21:817–823

    Article  Google Scholar 

  14. Beekman C, Siemons W, Ward TZ et al (2013) Phase transitions, phase coexistence, and piezoelectric switching behavior in highly strained BiFeO3 films. Adv Mater 25:5561–5567

    Article  Google Scholar 

  15. Chen Z, Prosandeev S, Luo ZL et al (2011) Coexistence of ferroelectric triclinic phases in highly strained BiFeO3 films. Phys Rev B 84:094116–094121

    Article  Google Scholar 

  16. Emery SB, Cheng C-J, Kan D et al (2010) Phase coexistence near a morphotropic phase boundary in Sm-doped BiFeO3 films. Appl Phys Lett 97:152902–152904

    Article  Google Scholar 

  17. Wolter S, Michael DB, Joong Hee N, Hans MC (2011) Temperature-driven structural phase transition in tetragonal-like BiFeO3. Appl Phys Expr 4:095801–095804

    Article  Google Scholar 

  18. Cheng CJ, Kan D, Lim SH et al (2009) Structural transitions and complex domain structures across a ferroelectric-to-antiferroelectric phase boundary in epitaxial Sm-doped BiFeO3 thin films. Phys Rev B 80:014109–014119

    Article  Google Scholar 

  19. Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B 192:55–69

    Article  Google Scholar 

  20. Coleman WF, Arumainayagam CR (1998) HyperChem 5 (by Hypercube, Inc.). J Chem Educ 75:416

    Article  Google Scholar 

  21. Khomchenko VA, Troyanchuk IO, Karpinsky DV, Paixao JA (2012) Structural and magnetic phase transitions in Bi1–xPrxFeO3 perovskites. J Mater Sci 47:1578–1581. doi:10.1007/s10853-011-6040-4

    Article  Google Scholar 

  22. Teslic S, Egami T (1998) Atomic structure of PbZrO3 determined by pulsed neutron diffraction. Acta Cryst B 54:750–765

    Article  Google Scholar 

  23. Karpinsky DV, Troyanchuk IO, Tovar M et al. (2014) Temperature and composition-induced structural transitions in Bi1−x La(Pr) x FeO3 ceramics. J Am Ceram Soc. doi: 10.1111/jace.12978

  24. Levin I, Tucker MG, Wu H et al (2011) Displacive phase transitions and magnetic structures in Nd-substituted BiFeO3. Chem Mater 23:2166–2175

    Article  Google Scholar 

  25. Karpinsky DV, Troyanchuk IO, Tovar M, Sikolenko V, Efimov V, Kholkin AL (2013) Evolution of crystal structure and ferroic properties of La-doped BiFeO3 ceramics near the rhombohedral–orthorhombic phase boundary. J. Alloys Compd 555:101–107

    Article  Google Scholar 

  26. Fujii K, Kato H, Omoto K, Yashima M, Chen J, Xing X (2013) Experimental visualization of the Bi–O covalency in ferroelectric bismuth ferrite (BiFeO3) by synchrotron X-ray powder diffraction analysis. Phys Chem Chem Phys 15:6779–6782

    Article  Google Scholar 

  27. Panwar N, Coondoo I, Tomar I, Kholkin I, Puli VS, Katiyar RS (2012) Nanoscale piezoresponse and magnetic studies of multiferroic Co and Pr cosubstituted BFO thin films. Mater Res Bull 47:4240–4245

    Article  Google Scholar 

  28. Karpinsky DV, Troyanchuk IO, Sikolenko V, Efimov V, Kholkin AL (2013) Electromechanical and magnetic properties of BiFeO3–LaFeO3–CaTiO3 ceramics near the rhombohedral-orthorhombic phase boundary. J Appl Phys 113:187218–187223

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the FCT (Grants SFRH/BPD/42506/2007, EXPL/CTM-NAN/1611/2013), RFFI (Grant 13-02-90903) and BRFFI (F014D-001). The work at CICECO was partly supported by the FCT Grant Pest-C/CTM/LA0011/013. Dr. Maria Celeste Azevedo is acknowledged for the DSC measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Karpinsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpinsky, D.V., Troyanchuk, I.O., Sikolenko, V. et al. Phase coexistence in Bi1−x Pr x FeO3 ceramics. J Mater Sci 49, 6937–6943 (2014). https://doi.org/10.1007/s10853-014-8398-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8398-6

Keywords

Navigation