Skip to main content
Log in

Hydrophobic carbon nanotubes for removal of oils and organics from water

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, we synthesized p-phenylenediamine modified carbon nanotubes (P-CNTs) by diazotization reaction. The resulting material shows a BET surface area of 285 m2 g−1 and a total volume of 0.65 cm3 g−1 with abundant mesopores. Also, the P-CNTs exhibit good surface hydrophobicity with water contact angle of 140.8°, which should be attributed to the cooperation of both surface roughness and hydrophobic chemical compositions (aromatic rings linkages) of P-CNTs. Taking advantages of the intrinsic porosity and surface hydrophobicity, the resulting P-CNTs exhibit a notably selective absorbing ability and good recyclability for removal of organics and oils from water, which makes them the promising candidates for liquid–liquid separation and waste oil treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hayase G, Kanamori K, Fukuchi M, Kaji H, Nakanishi K (2013) Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water. Angew Chem Int Ed 52:1986–1989

    Article  Google Scholar 

  2. Yip TL, Talley WK, Jin D (2011) The effectiveness of double hulls in reducing vessel-accident oil spillage. Mar Pollut Bull 62:2427–2432

    Article  Google Scholar 

  3. Li H, Boufadel MC (2010) Long-term persistence of oil from the Exxon Valdez spill in two-layer beaches. Nat Geosci 3:96–99

    Article  Google Scholar 

  4. Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, Jiang L (2011) A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv Mater 23:4270–4273

    Article  Google Scholar 

  5. Kota AK, Kwon G, Choi W, Mabry JM, Tuteja A (2012) Hygro-responsive membranes for effective oil-water separation. Nat commun 3:1025–1032

    Article  Google Scholar 

  6. Coasne B, Alba-Simionesco C, Audonnet F, Dossehc G, Gubbins KE (2011) Adsorption, structure and dynamics of benzene in ordered and disordered porous carbons. Phys Chem Chem Phys 13:3748–3757

    Article  Google Scholar 

  7. Zhao H, Nagy KL (2004) Dodecyl sulfate–hydrotalcite nanocomposites for trapping chlorinated organic pollutants in water. J Colloid Interface Sci 274:613–624

    Article  Google Scholar 

  8. Yang J, Lee S, Lee H, Lee J, Kim HK, Lee SU, Sohn D (2011) Synthesis of an attapulgite clay@carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water. Langmuir 27:8998–9004

    Article  Google Scholar 

  9. Kalies G, Rockmann R, Tuma D, Gapke J (2010) Ordered mesoporous solids as model substances for liquid adsorption. Appl Surf Sci 256:5395–5398

    Article  Google Scholar 

  10. Tan D, Xiong W, Sun H, Zhang Z, Ma W, Meng C, Fan W, Li A (2013) Conjugated microporous polymer with film and nanotube-like morphologies. Micropor Mesopor Mater 176:25–30

    Article  Google Scholar 

  11. Tan D, Fan W, Xiong W, Sun H, Cheng Y, Liu, Meng C, Li A, Deng WQ (2012) Study on the morphologies of covalent organic microporous polymers: the role of reaction solvents. Macromol Chem Phys 213:1435–1440

    Article  Google Scholar 

  12. Tan D, Fan W, Xiong W, Sun H, Li A, Deng W, Meng C (2012) Study on adsorption performance of conjugated microporous polymers for hydrogen and organic solvents: the role of pore volume. Eur Polym J 48:705–711

    Article  Google Scholar 

  13. Yuan J, Liu X, Akbulut O, Hu J, Suib SL (2008) Superwetting nanowire membranes for selective absorption. Nat Nanotechnol 3:332–336

    Article  Google Scholar 

  14. Bi H, Xie X, Yin K, Zhou Y, Wan S, He L, Xu F, Banhart F, Sun L, Ruoff RS (2012) Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Funct Mater 22:4421–4425

    Article  Google Scholar 

  15. Nguyen DD, Tai NH, Lee SB, Kuo WS (2012) Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ Sci 5:7908–7912

    Article  Google Scholar 

  16. Zhang Y, Wei S, Liu F, Du Y, Liu S, Ji Y, Yokoi T, Tatsumi T, Xiao FS (2009) Superhydrophobic nanoporous polymers as efficient adsorbents for organic compounds. Nano Today 4:135–142

    Article  Google Scholar 

  17. Li A, Sun HX, Tan DZ, Fan WJ, Wen SH, Qing XJ, Li GX, Li SY, Deng WQ (2011) Superhydrophobic conjugated microporous polymers for separation and adsorption. Energy Environ Sci 4:2062–2065

    Article  Google Scholar 

  18. Sun H, Li A, Zhu Z, Liang W, Zhao X, La P, Deng W (2013) Superhydrophobic activated carbon-coated sponges for separation and absorption. ChemSusChem 6:1057–1062

    Article  Google Scholar 

  19. Jin Y, Hawkins SC, Huynh CP, Su S (2013) Carbon nanotube modified carbon composite monoliths as superior adsorbents for carbon dioxide capture. Energy Environ Sci 6:2591–2596

    Article  Google Scholar 

  20. Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, Shu Q, Wu D (2010) Carbon nanotube sponges. Adv Mater 22:617–621

    Article  Google Scholar 

  21. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310

    Article  Google Scholar 

  22. Peng X, Li Y, Luan Z, Di Z, Wang H, Tian B, Jia Z (2003) Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chem Phys Lett 376:154–158

    Article  Google Scholar 

  23. Li YH, Wang S, Luan Z, Ding J, Xu C, Wu D (2003) Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41:1057–1062

    Article  Google Scholar 

  24. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859

    Article  Google Scholar 

  25. Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013

    Article  Google Scholar 

  26. Leonard AD, Hudson JL, Fan H, Booker R, Simpson LJ, ONeill KJ, Parilla PA, Heben MJ, Pasquali M, Kittrell C, Tour JM (2009) Nanoengineered carbon scaffolds for hydrogen storage. J Am Chem Soc 131:723–728

    Article  Google Scholar 

  27. Hu H, Zhao B, Hamon MA, Kamaras K, Itkis ME, Haddon RC (2003) Sidewall functionalization of single-Walled carbon nanotubes by addition of dichlorocarbene. J Am Chem Soc 125:14893–14900

    Article  Google Scholar 

  28. Li H, Cheng F, Duft AM, Adronov A (2005) Functionalization of single-walled carbon nanotubes with well-defined polystyrene by “click” coupling. J Am Chem Soc 127:14518–14524

    Article  Google Scholar 

  29. Maphutha S, Moothi K, Meyyappan M, Iyuke SE (2013) A carbon nanotube-infused polysulfone membrane with polyvinyl alcohol layer for treating oil-containing waste water. Sci Rep 3:1509–1514

    Article  Google Scholar 

  30. Liao Q, Sun J, Gao L (2008) The adsorption of resorcinol from water using multi-walled carbon nanotubes. Colloid Surf A 312:160–165

    Article  Google Scholar 

  31. Buttry DA, Peng JCM, Donnet J, Rebouillat S (1999) Immobilization of amines at carbon fiber surfaces. Carbon 37:1929–1940

    Article  Google Scholar 

  32. Donnet J, Wang TK, Peng JCM, Rebouillat S (1998) Carbon fibers. Marcel Deckert, New York

    Google Scholar 

  33. Pei C, Sun H, Zhu Z, Liang W, Jin An, Zhang Q, Li A (2014) Synthesis of novel porous graphene nanocomposite and its use as electrode and absorbent. RSC Adv 4:14042–14047

    Article  Google Scholar 

  34. Wang K, Hu NX, Xu G, Qi Y (2011) Stable superhydrophobic composite coatings made from an aqueous dispersion of carbon nanotubes and a fluoropolymer. Carbon 49:1769–1774

    Article  Google Scholar 

  35. Zhu X, Zhang Z, Ren G, Yang J, Wang K, Xu X, Men X, Zhou X (2012) A novel superhydrophobic bulk material. J Mater Chem 22:20146–20148

    Article  Google Scholar 

  36. Dyke CA, Tour JM (2003) Solvent-free functionalization of carbon nanotubes. J Am Chem Soc 125:1156–1157

    Article  Google Scholar 

  37. Bahr JL, Tour JM (2001) Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem Mater 13:3823–3824

    Article  Google Scholar 

  38. Mamedov AA, Kotov NA, Prato M, Guldi DM, Wicksten JP, Hirsch A (2002) Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat Mater 1:190–194

    Article  Google Scholar 

  39. Yang Z, Xia Y, Mokaya R (2007) Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J Am Chem Soc 129:1673–1679

    Article  Google Scholar 

  40. Ci L, Wei B, Xu C, Liang J, Wu D, Xie S, Zhou W, Li Y, Liu Z, Tang D (2001) Crystallization behavior of the amorphous carbon nanotubes. J Cryst Growth 233:823–828

    Article  Google Scholar 

  41. Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, Xin Q (2003) Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem B 107:6292–6299

    Article  Google Scholar 

  42. McNally T, Potschke P, Halley P, Murphy M, Martin D, Belld SEJ, Brennane GP, Beinf D, Lemoineg P, Quinng JP (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46:8222–8232

    Article  Google Scholar 

  43. Feng W, Bai XD, Lian YQ, Liang J, Wang XG, Yoshino K (2003) Well-aligned polyaniline/carbon-nanotube composite films grown by in situ aniline polymerization. Carbon 41:1551–1557

    Article  Google Scholar 

  44. Pirlot C, Willems I, Fonseca A, Nagy JB, Delhalle J (2002) Preparation and characterization of carbon nanotube/polyacrylonitrile composites. Adv Eng Mater 4:109–114

    Article  Google Scholar 

  45. Chen J, Rao AM, Lyuksyutov S, Itkis ME, Hamon MA, Hu H, Cohn RW, Eklund PC, Colbert DT, Smalley RE, Haddon RC (2001) Dissolution of full-length single-walled carbon nanotubes. J Phys Chem B 105:2525–2528

    Article  Google Scholar 

  46. Li H, Wang X, Song Y, Liu Y, Li Q, Jiang L, Zhu D (2001) Super-“amphiphobic” aligned carbon nanotube films. Angew Chem Int Ed 40:1743–1746

    Article  Google Scholar 

  47. Wang CF, Tzeng FS, Chen HG, Chang CJ (2012) Ultraviolet-durable superhydrophobic zinc oxide-coated mesh films for surface and underwater–oil capture and transportation. Langmuir 28:10015–10019

    Article  Google Scholar 

  48. Fan ZL, Qin XJ, Sun HX, Zhu ZQ, Cj Pei, Liang WD, Bao XM, An J, La PQ, Li A, Deng WQ (2013) Superhydrophobic mesoporous graphene for separation and absorption. ChemPlusChem 78:1282–1287

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Grant Nos. 51263012, 51262019 and 21306072), Fundamental Research Funds for the Universities of Gansu Province and Gansu Provincial Science Fund for Distinguished Young Scholars (Grant No. 1308RJDA012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., La, P., Zhu, Z. et al. Hydrophobic carbon nanotubes for removal of oils and organics from water. J Mater Sci 49, 6855–6861 (2014). https://doi.org/10.1007/s10853-014-8387-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8387-9

Keywords

Navigation