Skip to main content
Log in

Room-temperature multiferroic properties and magnetoelectric coupling in Bi4−x Sm x Ti3−x Co x O12−δ ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We present the structural, dielectric, ferroelectric, magnetic and magnetoelectric studies of lead free; single phase Bi4−x Sm x Ti3−x Co x O12−δ (0 ≤ x ≤ 0.07) ceramics, synthesized using a standard solid-state reaction technique. Raman spectroscopy analysis reveals the relaxation of distortion in TiO6 octahedron. Field emission scanning electron microscopy confirmed the growth of plate-like grains. It is observed that with the substitution of Sm3+ and Co3+ ions the dielectric constant, loss tangent and ferroelectric transition temperature decreases. Electrical dc resistivity, remnant polarization and magnetization increases with increasing Sm3+ and Co3+ contents. The magnetoelectric coupling co-efficient, α = 0.65 mV cm−1 Oe−1 is realized for Bi4−x Sm x Ti3−x Co x O12−δ (x = 0.07) ceramic sample. Our results clearly demonstrate the lead free, multiferroic nature of Sm/Co-substituted Bi4Ti3O12, which may find useful application in designing cost-effective electromagnetic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442:759–765

    Article  Google Scholar 

  2. Aken BBV, Rivera JP, Schmid H, Fiebig M (2007) Observation of ferrotoroidic domains. Nature 449:702–705

    Article  Google Scholar 

  3. Fiebig M (2005) Revival of magnetoelectric effect. J Phys D Appl Phys 38:R123–R152

    Article  Google Scholar 

  4. Khomskii DI (2006) Multiferroics: different ways to combine magnetism and ferroelectricity. J Magn Magn Mater 306:1–8

    Article  Google Scholar 

  5. Schmid H (1994) Multi-ferroic magnetoelectrics. Ferroelectrics 162:317–338

    Article  Google Scholar 

  6. Wood VE, Austin AE (1975) Magnetoelectric interaction phenomenon in crystals. In: Freeman AJ, Schmid H (eds), Gordon and Breach, New York, pp 181–194

  7. Hill NA (2000) Why are there so few magnetic ferroelectrics. J Phys Chem B 104:6694–6709

    Article  Google Scholar 

  8. Smolenskii GA, Chupis IE (1982) Ferroelectromagnets. Sov Phys Usp 25:475–493

    Article  Google Scholar 

  9. Jona F, Shirane G (1993) Ferroelectric crystals: Dover, New York

  10. Khomskii DI (2001) Magnetism and ferroelectricity: why do they so seldom co-exist. Bull Am Phys Soc C 21:002

    Google Scholar 

  11. Nan CW, Bichurin MI, Dong S, Viehland D, Srinivasan G (2008) Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys 103:031101

    Article  Google Scholar 

  12. Fiebig M, Lottermoser T, Fröhlich D, Goltsev AV, Pisarev RV (2002) Observation of coupled magnetic and electric domains. Nature 419:818–820

    Article  Google Scholar 

  13. Muto M, Tanabe Y, Sakano TI, Hanamura E (1998) Magnetoelectric and second harmonic spectra in antiferromagnetic Cr2O3. Phys Rev B 57:9586–9607

    Article  Google Scholar 

  14. Kimura T, Goto T, Shinatani H, Ishizaka K, Arima T, Tokura Y (2003) Magnetic control of ferroelectric polarization. Nature 426:55–58

    Article  Google Scholar 

  15. Palkar VR, Malik SK (2005) Observation of magnetoelectric behaviour in Pb(Fe x Ti1−x )O3. Solid State Commun 134:783–786

    Article  Google Scholar 

  16. Kumar M, Yadav KL (2007) Observation of room temperature magnetoelectric coupling in a Ni substituted Pb1−xNixTiO3. J Appl Phys 102:076107

    Article  Google Scholar 

  17. Herbert JM (1982) Ferroelectric transducers and sensors: Gordon and Breach, New York.

  18. Jardiel T, Caballero AC, Villegas M (2008) Aurivillius ceramics: Bi4Ti3O12-based Piezoelectrics. J Ceram Soc Jpn 116:511–518

    Article  Google Scholar 

  19. Yao YY, Song CH, Bao P, Su D, Lu XM, Zhu JS, Wang YN (2004) Doping effect on the dielectric property in bismuth titanate. J Appl Phys 95:3126–3130

    Article  Google Scholar 

  20. Lu J, Qiao LJ, Chu WY (2008) Comparison of room temperature multiferroic in Bi4Fe2TiO12 film and bulk. J Univ Sci Technol B 15:782–788

    Article  Google Scholar 

  21. Chen XQ, Yang FJ, Cao WQ, Wang DY, Chen K (2010) Room temperature magnetoelectric coupling in Bi4(Ti1Fe2)O12-δ system. J Phys D Appl Phys 43:065001

    Article  Google Scholar 

  22. Chen XQ, Yang FJ, Cao WQ, Wang DY, Chen K (2010) Enhanced multiferroic characteristics in Fe-doped Bi4Ti3O12 ceramics. Solid State Commun 150:1221–1224

    Article  Google Scholar 

  23. Park BH, Kang BS, Bu SD, Nch TW, Lee J, Jo W (1999) Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 401:682–684

    Article  Google Scholar 

  24. Kim JS, Kim SS (2005) Ferroelectric properties of Nd-substituted bismuth titanate thin films processed at low temperature. Appl Phys A 81:1427–1430

    Article  Google Scholar 

  25. Shigyo T, Kiyono H, Nakano J, Itoh H, Takahashi J (2008) Synthesis and dielectric-magnetic properties of rare-earth (La, Nd, Sm)-modified Bi4Ti3O12. Jpn Soc Appl Phys 47:7617–7622

    Article  Google Scholar 

  26. Srinivas A, Boey FYC, Sritharan T (2005) Samarium modified strontium bismuth niobate: synthesis and ferroelectro-magnetic property evaluation. Mater Sci Eng B 123:222–226

    Article  Google Scholar 

  27. Jungang H, Kumar RV (2011) B-site multi-element doping effects on electrical property of Bismuth Titanate Ceramics. Ferroelectrics-Physical effects. InTech, China, pp 244–274

    Google Scholar 

  28. Shannon RD (1976) Revised ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A A32:751–767

    Article  Google Scholar 

  29. Yonenda Y, Kohara S, Mizuki J (2006) Pair-Distribution Function Analysis of Bismuth Titanate. J Jpn J Appl Phys 45:7556

    Article  Google Scholar 

  30. Kojima S, Shimada S (1996) Soft mode spectroscopy of bismuth titanate single crystals. Phys B 219(220):617

    Article  Google Scholar 

  31. Kojima S (2000) Raman spectroscopy of bismuth layer structured ferroelectrics. Ferroelectrics 239:55–62

    Article  Google Scholar 

  32. Zhu J, Chen XB, Zhang ZP, Shen JC (2005) Raman and X-ray photoelectron scattering study of lanthnum-doped strontium bismuth titanate. Acta Mater 53:3155–3162

    Article  Google Scholar 

  33. Graves PR, Hua G, Myhra S, Thompson JG (1995) The Raman modes of the Aurivillius Phases: Temperature and Polarization Dependence. J Solid State Chem 114:112–122

    Article  Google Scholar 

  34. Liu HL, Yoon S, Cooper SL, Cheng SW, Han PD, Payne DA (1998) Probing anisotropic magneto-transport in manganese pervoskites using Raman spectroscopy. Phys Rev B 58:R10115

    Article  Google Scholar 

  35. Verma KC, Kotnala RK, Negi NS (2008) Improved dielectric and ferromagnetic properties in Fe-doped PbTiO3 nanoparticles at room temperature. Appl Phys Lett 92:152902

    Article  Google Scholar 

  36. Rachna S, Bhattacharyya S, Gupta SM (2010) Correlating structure, dielectric and impedance studies with lanthanum-ion substitution in bismuth titanate. Mater Sci Eng B 175:207–212

    Article  Google Scholar 

  37. Jiang QY, Subbarao EC, Cross LE (1994) Effect of composition and temperature on electric fatigue of La-doped lead zirconate titanate ceramics. J Appl Phys 75:7433

    Article  Google Scholar 

  38. Hsiang HI, Yen FS (1996) effect of crystallite size on the ferroelectric domain growth of ultrafine BaTiO3 powders. J Am Ceram Soc 79:1053–1060

    Article  Google Scholar 

  39. Yi WY, Hui WX, Tu LL (2010) Ferroelectric and dielectric properties of La/Mn co-doped Bi4Ti3O12 ceramics. Chin Phys B 19:037701

    Article  Google Scholar 

  40. Coey JMD, Douvalis AP, Fitzgerald CB, Venkatesan M (2004) Ferromagnetism in Fe-doped SnO2 thin films. Appl Phys Lett 84:1332–1334

    Article  Google Scholar 

  41. Chen X, Wei C, Xiao J, Yue Y, Zeng X, Yang F, Li P, He Y (2013) Room temperature multiferroic properties and magneto-capacitance effect of modified ferroelectric Bi4Ti3O12 ceramics. J Phys D Appl Phys 46:425001

    Article  Google Scholar 

  42. Ren Z, Xu G, Wei X, Liu Y, Hou X, Du P, Weng W, Shen G, Han G (2007) Room temperature ferromagnetism in Fe-doped PbTiO3 nanocrystals. Appl Phys Lett 91:063106

    Article  Google Scholar 

  43. Singh A, Gupta A, Chatterjee R (2008) Enhanced magnetoelectric coefficient in the modified BiFeO3-PbTiO3 system with large La substitution. Appl Phys Lett 93:022902

    Article  Google Scholar 

  44. Srinivas A, Kim DW, Hong KS, Suryanarayan SV (2003) Observation of ferroelectromagnetic nature in rare-earth substituted bismuth iron titanate. Appl Phys Lett 83:2217–2219

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Dr. Mahavir Singh and Dr. Nagesh Thakur, Department of Physics Himachal Pradesh University, Shimla, India for magnetic, ferroelectric and dielectric measurements. Joginder Paul is thankful to the department of Higher Education Himachal Pradesh-India for providing study leave to conduct this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joginder Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, J., Bhardwaj, S., Sharma, K.K. et al. Room-temperature multiferroic properties and magnetoelectric coupling in Bi4−x Sm x Ti3−x Co x O12−δ ceramics. J Mater Sci 49, 6056–6066 (2014). https://doi.org/10.1007/s10853-014-8328-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8328-7

Keywords

Navigation