Skip to main content
Log in

Phase Structure, Piezoelectric and Multiferroic Properties of SmCoO3-Modified BiFeO3-BaTiO3 Lead-Free Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

(0.75−x)BiFeO3-0.25BaTiO3-xSmCoO3 + 1 mol.% MnO2 lead-free multiferroic ceramics were synthesized by a conventional ceramic fabrication technique. The effects of SmCoO3 on phase structure, piezoelectricity and multiferroicity of the ceramics were studied. All the ceramics can be well sintered at a low sintering temperature of 960°C. The crystalline structure of the ceramics is transformed from rhombohedral to tetragonal symmetry with increasing the amount of SmCoO3. A morphotropic phase boundary of rhombohedral and tetragonal phases is formed at x = 0.01–0.04. A small amount of SmCoO3 is shown to improve the ferroelectric, piezoelectric and magnetoelectric properties of the ceramics. For the ceramics with x = 0.01–0.03, enhanced resistivity (R ∼ 1.2 × 109 Ω cm to 2.1 × 109 Ω cm), piezoelectricity (d 33 ∼ 65 pC/N to 106 pC/N) and ferroelectricity (P r ∼ 6.38 μC/cm2 to 22.89 μC/cm2) are obtained. The ferromagnetism of the materials is greatly enhanced by the doping of SmCoO3 such that a very high magnetoelectric coefficient of ∼742 mV/(cm Oe) is obtained at x = 0.01, suggesting a promising potential in multiferroic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook, and H. Jaffe, Piezoelectric ceramics (Academic Press, London, 1971), pp. 115–120.

    Google Scholar 

  2. T. Kawae, Y. Terauchi, H. Tsuda, M. Kumeda, and A. Morimoto, Appl. Phys. Lett. 94, 112904 (2009).

    Article  Google Scholar 

  3. Q. Zhang, X. Zhu, Y. Xu, H. Gao, Y. Xiao, D. Liang, J. Zhu, J. Zhu, and D. Xiao, J. Alloys Compd. 546, 57 (2013).

    Article  Google Scholar 

  4. F. Azough, R. Freer, M. Thrall, R. Cernik, F. Tuna, and D. Collison, J. Eur. Ceram. Soc. 30, 727 (2010).

    Article  Google Scholar 

  5. S.K. Pradhan and B.K. Roul, Phys. B 406, 3313 (2011).

    Article  Google Scholar 

  6. F. Tyholdt, S. Jorgensen, H. Fjellvag, and A.A. Gunnaes, Int. J. Mater. Res. 20, 2127 (2005).

    Article  Google Scholar 

  7. Q. Zheng, Y. Guo, F. Lei, X. Wu, and D. Lin, J. Mater. Sci.: Mater. Electron. 25, 2638 (2014).

    Article  Google Scholar 

  8. S.M. Selbach, M.A. Einarsrud, and T. Grande, Chem. Mater. 21, 169 (2008).

    Article  Google Scholar 

  9. M. Mahesh Kumar, V.R. Palkar, K. Srinivas, and S.V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000).

    Article  Google Scholar 

  10. K.S. Nalwa and A. Garg, J. Appl. Phys. 103, 044101 (2008).

    Article  Google Scholar 

  11. P. Uniyal and K.L. Yadav, J. Phys. Condens. Matter 21, 405901 (2009).

    Article  Google Scholar 

  12. Y.J. Wu, X.K. Chen, J. Zhang, and X.J. Chen, J. Appl. Phys. 111, 053927 (2012).

    Article  Google Scholar 

  13. T. Higuchi, W. Sakamoto, N. Itoh, T. Shimura, T. Hattori, and T. Yogo, Appl. Phys. Exp. 1, 011502 (2008).

    Article  Google Scholar 

  14. Q. Zhou, C. Zhou, H. Yang, C. Yuan, G. Chen, L. Cao, and Q. Fan, J. Mater. Sci. Mater. Electron. 25, 196 (2014).

    Article  Google Scholar 

  15. X.J. Xi, S.Y. Wang, W.F. Liu, H.J. Wang, F. Guo, X. Wang, J. Gao, and D.J. Li, J. Magn. Magn. Mater. 355, 259 (2014).

    Article  Google Scholar 

  16. D. Lin, Q. Zheng, Y. Li, Y. Wan, Q. Li, and W. Zhou, J. Eur. Ceram. Soc. 33, 3023 (2013).

    Article  Google Scholar 

  17. Q.Q. Wang, Z. Wang, X.Q. Li, and X.M. Chen, J. Am. Ceram. Soc. 95, 670 (2012).

    Article  Google Scholar 

  18. Y. Li, N. Jiang, K.H. Lam, Y. Guo, Q. Zheng, Q. Li, W. Zhou, Y. Wan, and D. Lin, J. Am. Ceram. Soc. 97, 3602 (2014).

    Article  Google Scholar 

  19. S.X. Huo, S.L. Yuan, Y. Qiu, Z.Z. Ma, and C.H. Wang, Mater. Lett. 68, 8 (2012).

    Article  Google Scholar 

  20. H. Yang, C. Zhou, X. Zhou, G. Chen, W. Li, and H. Wang, J. Eur. Ceram. Soc. 33, 1177 (2013).

    Article  Google Scholar 

  21. S.O. Leontsev and R.E. Eitel, J. Am. Ceram. Soc. 92, 2957 (2009).

    Article  Google Scholar 

  22. G.L. Yuan and S.W. Or, J. Appl. Phys. 100, 024109 (2006).

    Article  Google Scholar 

  23. V.R. Singh, V.K. Verma, K. Ishigami, G. Shibata, Y. Yamazaki, A. Fujimori , Y. Takeda, T. Okane, Y. Saitoh, H. Yamagami, Y. Nakamura, M. Azuma, and Y. Shimakawa, J. Appl. Phys. 114, 103905 (2013).

    Article  Google Scholar 

  24. D. Lin, K.W. Kwok, and H.L.W. Chan, Mater. Chem. Phys. 109, 455 (2008).

    Article  Google Scholar 

  25. M.I. Mendelson, J. Am. Ceram. Soc. 52, 443 (1968).

    Article  Google Scholar 

  26. X.H. Wang, P.L. Chen, and I.W. Chen, J. Am. Ceram. Soc. 89, 431 (2006).

    Article  Google Scholar 

  27. D. Shi, K.H. Lam, and K. Li, J. Alloys Compd. 617, 485 (2014).

    Article  Google Scholar 

  28. J.S. Kim, C.I. Cheon, H.J. Kang, and P.W. Jang, J. Eur. Ceram. Soc. 27, 3951 (2007).

    Article  Google Scholar 

  29. D.V. Karpinsky, I.O. Troyanchuk, M. Tovar, V. Sikolenko, V. Efimov, and A.L. Kholkin, J. Alloys Compd. 55, 101 (2013).

    Article  Google Scholar 

  30. H. Zhang, W. Jo, K. Wang, and K.G. Webber, Ceram. Int. 40, 4759 (2014).

    Article  Google Scholar 

  31. G. Catalan and J.F. Scott, Adv. Mater. 21, 2463 (2009).

    Article  Google Scholar 

  32. M. Dolgos, U. Adem, X. Wan, Z. Xu, A.J. Bell, T.P. Comyn, T. Stevenson, and J. Bennett, Chem. Sci. 3, 1426 (2012).

    Article  Google Scholar 

  33. L. Lutterotti, MAUD: a friendly Java program for Material Analysis Using Diffraction, CPD Newsletter (IUCr) No. 24, December 2000

  34. Q. Zheng, L. Luo, K.H. Lam, N. Jiang, Y. Guo, and D. Lin, J. Appl. Phys. 116, 184101 (2014).

    Article  Google Scholar 

  35. B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.E. Park, D.E. Cox, and G. Shirane, Phys. Rev. B. 61, 8687 (2000).

    Article  Google Scholar 

  36. C.G. Xu, D.M. Lin, and K.W. Kwok, Solid State Sci. 10, 934 (2008).

    Article  Google Scholar 

  37. Q. Zheng, D. Lin, X. Wu, C. Xu, C. Yang, and K.W. Kwok, J. Mater. Sci.: Mater. Electron. 21, 625 (2010).

    Article  Google Scholar 

  38. G.L. Yuan, S.W. Or, J.M. Liu, and Z.G. Liu, Appl. Phys. Lett. 89, 052905 (2006).

    Article  Google Scholar 

  39. Z.Z. Ma, Z.M. Tian, J.Q. Li, C.H. Wang, S.X. Huo, H.N. Duan, and S.L. Yuan, Solid State Sci. 13, 2196 (2011).

    Article  Google Scholar 

  40. J.M. Caicedo, J.A. Zapata, M.E. Gomez, and P. Prieto, J. Appl. Phys. 103, 07E306 (2008).

    Article  Google Scholar 

  41. V.B. Naik and R. Mahendiran, Solid State Commun. 149, 754 (2009).

    Article  Google Scholar 

  42. D.R. Patil and B.K. Chougule, J. Alloys Compd. 458, 335 (2008).

    Article  Google Scholar 

  43. A. Srinivas, R.V. Krishnaiah, T. Karthik, P. Suresh, S. Asthana, and S.V. Kamat, Appl. Phys. Lett. 101, 082902 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the projects of Education Department of Sichuan Province (15ZA0037, 15ZB0032), and Science and Technology Bureau of Sichuan Province (2014JY0040). It was also partially supported from The Hong Kong Polytechnic University (1-ZVCG, 4-ZZDC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kwok Ho Lam or Dunmin Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, N., Tian, M., Luo, L. et al. Phase Structure, Piezoelectric and Multiferroic Properties of SmCoO3-Modified BiFeO3-BaTiO3 Lead-Free Ceramics. J. Electron. Mater. 45, 291–300 (2016). https://doi.org/10.1007/s11664-015-4062-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4062-4

Keywords

Navigation