Skip to main content
Log in

The structure and properties of 0.95MgTiO3–0.05CaTiO3 ceramics doped with Co2O3

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of Co2O3 addition on the sintering behavior, phase formation, microstructure and microwave dielectric properties of 0.95MgTiO3–0.05CaTiO3 ceramics have been investigated. The structure and microstructure of the ceramics were investigated using X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. These results suggested that Co2O3 addition not only contributes in lowering the sintering temperature but also inhibits the formation of second phase MgTi2O5 in 0.95MgTiO3–0.05CaTiO3 ceramics. Moreover, the decomposition of Co2O3 would inhibit the Ti4+ from being restored to Ti3+, which had the positive effect on the Q × f value. A fine combination of microwave dielectric properties (ε r = 20.48, Q × f = 76,485 GHz, τ f  = 2.43 ppm/°C) was achieved for 0.95MgTiO3–0.05CaTiO3–0.01Co2O3 ceramics sintered at 1300 °C for 4 h, which satisfied microwave applications in resonators, filters and antenna substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sebastian MT (2008) Dielectric materials for wireless communication. Elsevier

  2. Yu SQ, Tang B, Zhang X, Zhang SR, Zhou XH, Alford N (2012) Improved high-Q microwave dielectric ceramics in CuO-doped BaTi4O9–BaZn2Ti4O11 system. J Am Ceram Soc 95(6):1939–1943. doi:10.1111/j.1551-2916.2012.05086.x

    Article  Google Scholar 

  3. J-C Di, G-H Chen, M-Z Hou, Yuan C-l, Xu H-R, Zhou C-R (2012) Low loss and middle permittivity of (1 − x) Ca4La2Ti5O17–xNdAlO3 dielectric resonators with near-zero temperature coefficient of the resonant frequency. J Mater Sci 47(5):2271–2277

    Article  Google Scholar 

  4. Fu P, Lu W, Lei W, Xu Y, Wang X, Wu J (2013) Transparent polycrystalline MgAl2O4 ceramic fabricated by spark plasma sintering: microwave dielectric and optical properties. Ceram Int 39(3):2481–2487. doi:10.1016/j.ceramint.2012.09.006

    Article  Google Scholar 

  5. Yang X, Ding S, Liu X, Yu B, Yang X, Song T (2012) The structure and properties of 0.95MgTiO3-0.05CaTiO3 ceramics co-doped with ZnO-ZrO2. Ceram Int 38:S61–S64. doi:10.1016/j.ceramint.2011.04.050

    Article  Google Scholar 

  6. Chen J-Y, Huang C-L (2010) A new low-loss microwave dielectric using (Ca0.8Sr0.2)TiO3-doped MgTiO3 ceramics. Mater Lett 64(23):2585–2588. doi:10.1016/j.matlet.2010.08.046

    Article  Google Scholar 

  7. Belous A, Ovchar O, Durilin D, Krzmanc MM, Valant M, Suvorov D (2006) High-Q microwave dielectric materials based on the spinel Mg2TiO4. J Am Ceram Soc 89(11):3441–3445. doi:10.1111/j.1551-2916.2006.01271.x

    Article  Google Scholar 

  8. Huang C-L, Shen C-H (2009) Phase evolution and dielectric properties of (Mg0.95M 2+0.05 )Ti2O5(M2+=Co, Ni, and Zn) ceramics at microwave frequencies. J Am Ceram Soc 92(2):384–388. doi:10.1111/j.1551-2916.2008.02831.x

    Article  Google Scholar 

  9. Huang C-L, Pan C-L (2002) Low-temperature sintering and microwave dielectric properties of (1 − x) MgTiO3–xCaTiO3 ceramics using bismuth addition. Jpn J Appl Phys 41(2A):707–711. doi:10.1143/JJAP.41.707

    Article  Google Scholar 

  10. Huang C-L, Pan C-L, Shium S-J (2003) Liquid phase sintering of MgTiO3-CaTiO3 microwave dielectric ceramics. Mater Chem Phys 78(1):111–115. doi:10.1016/S0254-0584(02)00311-5

    Article  Google Scholar 

  11. Huang C-L, Shen C-H, Pan C-L (2007) Characterization and dielectric behavior of V2O5-doped MgTiO3–CaTiO3 ceramic system at microwave frequency. Mater Sci Eng B 145(1–3):91–96. doi:10.1016/j.mseb.2007.10.016

    Article  Google Scholar 

  12. Huang C-L, Hou JL, Pan C-L, Huang C-Y, Peng C-W, Wei C-H, Huang Y-H (2008) Effect of ZnO additive on sintering behavior and microwave dielectric properties of 0.95MgTiO3–0.05CaTiO3 ceramics. J Alloy Compd 450(1):359–363. doi:10.1016/j.jallcom.2006.10.132

    Article  Google Scholar 

  13. Hakki BW, Coleman PD (1960) A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans Microw Theory Tech 8(4):402–410. doi:10.1109/TMTT.1960.1124749

    Article  Google Scholar 

  14. Li L, Han Y, Zhang P, Li J, Cao L, Liao Q (2009) Effect of Co2O3 additive on the microstructures and dielectric properties of MgTiO3 ceramics. Ferroelectrics 388:167–171. doi:10.1080/00150190902966933

    Article  Google Scholar 

  15. Li L, Ding X, Liao Q (2012) Structure and properties analysis for low-loss (Mg1−xCox)TiO3 microwave dielectric materials prepared by reaction-sintering method. Ceram Int 38(3):1937–1941. doi:10.1016/j.ceramint.2011.10.024

    Article  Google Scholar 

  16. Tang B, Zhang S, Zhou X, Deng C, Yu S (2010) Preparation of pure MgTiO3 powders and the effect of the ZnNb2O6-dope onto the property of MgTiO3-based ceramics. J Alloy Compd 492(1–2):461–465. doi:10.1016/j.jallcom.2009.11.140

    Article  Google Scholar 

  17. Kucheiko S, Choi JW, Kim HJ, Jung HJ (1996) Microwave dielectric properties of CaTiO3–Ca (Al1/2Ta1/2) O3 ceramics. J Am Ceram Soc 79(10):2739–2743. doi:10.1111/j.1151-2916.1996.tb09040.x

    Article  Google Scholar 

  18. Sagala DA, Nambu S (1992) Microscopic calculation of dielectric loss at microwave frequencies for complex perovskite Ba (Zn1/3Ta2/3)O3. J Am Ceram Soc 75(9):2573–2575. doi:10.1111/j.1151-2916.1992.tb05613.x

    Article  Google Scholar 

  19. Guoqing W, Shunhua W, Hao S (2005) Microwave dielectric ceramics in the BaO–TiO2–ZnO system doped with MnCO3 and SnO2. Mater Lett 59(17):2229–2231. doi:10.1016/j.matlet.2005.02.070

    Article  Google Scholar 

  20. Chen Gh, Di Jc Xu, Hr Jiang Mh, Cl Yuan (2012) Microwave dielectric properties of Ca4La2Ti5 − x (Mg1/3Nb2/3) xO17 ceramics. J Am Ceram Soc 95(4):1394–1397. doi:10.1111/j.1551-2916.2011.05004.x

    Article  Google Scholar 

  21. Huang C-L, Liu S–S, Chen S-H (2011) The effect of non-stoichiometry on the microstructure and microwave dielectric properties of the Mg1+δTiO3+δ ceramics. J Alloys Compd 509(40):9702–9707. doi:10.1016/j.jallcom.2011.07.092

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Li or Bin Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Tang, B., Li, X. et al. The structure and properties of 0.95MgTiO3–0.05CaTiO3 ceramics doped with Co2O3 . J Mater Sci 49, 5850–5855 (2014). https://doi.org/10.1007/s10853-014-8294-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8294-0

Keywords

Navigation