Skip to main content
Log in

Low loss and middle permittivity of (1 − x) Ca4La2Ti5O17xNdAlO3 dielectric resonators with near-zero temperature coefficient of the resonant frequency

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The crystal structures, microstructure and microwave dielectric properties of (1 − x) Ca4La2Ti5O17xNdAlO3 (0 ≤ x ≤ 0.7) ceramic system have been investigated. The results show that all the compositions form single-phase ceramics. The microwave dielectric properties are strongly correlated with composition, sintering temperature, grain sizes and lattice defects. The cell volume decreases because of the substitution of Al3+ for Ti4+ and Nd3+ for La3+ which is associated with a decrease in the permittivity. With increase in x value, the permittivity (ε r ), temperature coefficient of resonant frequency (τ f ) and Q × f value decrease. A near-zero τ f is achieved at x = 0.6 with permittivity of 41.8 and Q × f value of 13,783 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wersing W (1996) Curr Opin Solid State Mater Sci 1(5):715

    Article  CAS  Google Scholar 

  2. Sebastian MT (2008) Dielectric materials for wireless communications. Elseiver Ltd., Oxford

    Google Scholar 

  3. Surendran KP, Sebastian MT (2005) J Mater Res 20:2019

    Article  Google Scholar 

  4. Zheng H, Reaney IM, Gyorgyfalva GD, Ubic R, Yarwood J, Seabra MP, Ferreira VM (2004) J. Mater. Res 19:488

    Article  CAS  Google Scholar 

  5. Reaney IM, Iddles D (2006) J Am Ceram Soc 89:2063

    CAS  Google Scholar 

  6. Zheng H, Györgyfalva GCD, Reaney IM (2005) J Mater Sci 40:5207. doi:10.1007/s10853-005-4414-1

    Article  CAS  Google Scholar 

  7. Rejini R, Subodh G, Sebastian MT (2008) J Mater Sci Mater Electron 19:1153

    Article  CAS  Google Scholar 

  8. Kipkoech ER, Azough F, Freer R (2005) J Appl Phys 97:064103-1

    Google Scholar 

  9. Huang CL, Chen JY, Jiang CY (2009) J Alloys Compd 7:144

    Google Scholar 

  10. Abdel Aziz DA, Sterianou I, Reaney IM (2009) J Mater Sci 44:6247. doi:10.1007/s10853-009-3853-5

    Article  CAS  Google Scholar 

  11. Liu HX, Tian ZQ, Wang H, Yu HT, Ouyang SX (2004) J Mater Sci 39:4319. doi:10.1023/B:JMSC.0000033416.63511.d8

    Article  CAS  Google Scholar 

  12. Liu HX, Yu HT, Tian ZQ, Meng ZH (2005) J Am Ceram Soc 88:453

    Article  CAS  Google Scholar 

  13. Cho SY, Kim IT, Hong KS (1999) J Mater Res 14:114

    Article  CAS  Google Scholar 

  14. Hakki BW, Coleman PD (1960) IRE Trans Microw Theory Technol 8:402

    Article  Google Scholar 

  15. Courtney WE, Trans IRE (1970) Microw Theory Technol 18:476

    Article  Google Scholar 

  16. Iqbal Y, Manan A, Reaney IM (2010) Mater Res Bull 46:1092

    Article  Google Scholar 

  17. Zhao F, Yue ZX, Zhang YC, Gui ZL, Li LT (2005) J Eur Ceram Soc 25:3347

    Article  CAS  Google Scholar 

  18. Klug P, Alexander LE (1954) X-ray diffraction procedure. Wiley, New York Chap. 9

    Google Scholar 

  19. Shannon RD (1976) Acta Cryst A 32:751

    Article  Google Scholar 

  20. Shannon RD (1993) J Appl Phys 73(1):348

    Article  CAS  Google Scholar 

  21. Bijumon PV, Sebastian MT, Mohanan P (2005) J Appl Phys 98:125105

    Article  Google Scholar 

  22. Iddles DM, Bell AJ, Moulson AJ (1992) J Mater Sci 27:6303. doi:10.1007/BF00576276

    Article  CAS  Google Scholar 

  23. Hsu C-H, Ho H-A (2010) Mater Lett 64:396

    Article  CAS  Google Scholar 

  24. Tamura H (2006) J Eur Ceram Soc 26:1775

    Article  CAS  Google Scholar 

  25. Li M, Feteira A, Mirsaneh M, Lee S, Lanagan MT, Randall CA, Sinclair DC (2010) J Am Ceram Soc 93(12):4087

    Article  CAS  Google Scholar 

  26. Chen XM, Liu D, Hou RZ, Hu X, Liu XQ (2004) J Am Ceram Soc 87:2208

    Article  CAS  Google Scholar 

  27. Harrop PJ (1969) J Mater Sci 4(4):370. doi:10.1007/BF00550407

    Article  CAS  Google Scholar 

  28. Moulson AJ, Herbert JM (1990) Electroceramics. Chapman & Hall, London

    Google Scholar 

  29. Cho S-Y, Youn H-J, Lee H-J, Hong K (2001) J Am Ceram Soc 84(4):753

    Article  CAS  Google Scholar 

  30. C XJ, Wang J, Zhao ZY, Geng WP, Zhang WD, Zhai JW (2011) J Electroceram 26:185

    Article  Google Scholar 

  31. Cole MW, Weiss CV, Ngo E, Hirsch S, Coryell LA, Alpay SP (1829) Appl Phys Lett 92(2008):061

    Google Scholar 

  32. Cole MW, Joshi PC, Ervin MH (2001) J Appl Phys 89(11):6336

    Article  CAS  Google Scholar 

  33. Suvorov D, Valant M, Jancar B, Skapin SD (2001) Acta Chim Slov 48:87

    CAS  Google Scholar 

  34. Hirano S, Hayashi T, Hattai A (1991) J Am Ceram Soc 74:1320

    Article  CAS  Google Scholar 

  35. Surendran KP, Solomon S, Varma MR, Mohanan P, Sebastian MT (2002) J Mater Res 17:2561

    Article  CAS  Google Scholar 

  36. Tagata M, Kageyama K (1989) J Am Ceram Soc 72:1955

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Guangxi Province, China (2010GXNSFA013029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-hua Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di, Jc., Chen, Gh., Hou, Mz. et al. Low loss and middle permittivity of (1 − x) Ca4La2Ti5O17xNdAlO3 dielectric resonators with near-zero temperature coefficient of the resonant frequency. J Mater Sci 47, 2271–2277 (2012). https://doi.org/10.1007/s10853-011-6039-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6039-x

Keywords

Navigation