Skip to main content
Log in

The elastic and geometrical properties of micro- and nano-structured hierarchical random irregular honeycombs

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

All the five independent elastic properties/constants of micro- and nano-structured hierarchical and self-similar random irregular honeycombs with different degrees of cell regularity are obtained by analysis and computer simulation in this paper. Cell wall bending, stretching, and transverse shearing are the main deformation mechanisms of hierarchical honeycombs. The strain gradient effects at the micro-meter scale, and the surface elasticity and initial stress effects at the nano-meter scale are incorporated into all the deformation mechanisms in the analysis and finite element simulations. The results show that the elastic properties of hierarchical random irregular honeycombs strongly depend on the thickness of the first-order cell walls if it is at the micro-meter scale, and that if the thickness of the first-order cell walls is at the nano-meter scale, the elastic properties of hierarchical random irregular honeycombs are not only size-dependent, but are also tunable and controllable over large ranges. In addition, the geometrical properties of nano-structured hierarchical random irregular honeycombs are also tunable and controllable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Warren WE, Kraynik M (1987) Foam mechanics: the linear elastic response of two-dimensional spatially periodic cellular materials. Mech Mater 6:27–37

    Article  Google Scholar 

  2. Silva MJ, Hayes WC, Gibson LJ (1995) The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids. Int J Mech Sci 37:1161–1177

    Article  Google Scholar 

  3. Masters IG, Evans KE (1996) Models for the elastic deformation of honeycombs. Compos Struct 35:403–422

    Article  Google Scholar 

  4. Gibson LJ, Ashby MF (1997) Cellular solids. Pergamon Press, Oxford

    Google Scholar 

  5. Chen C, Lu TJ, Fleck NA (1999) Effect of imperfections on the yielding of two-dimensional foams. J Mech Phys Solids 49:2245–2271

    Google Scholar 

  6. Zhu HX, Mills NJ (2000) The in-plane non-linear compression of regular honeycombs. Int J Solids Struct 37:1931–1949

    Article  Google Scholar 

  7. Zhu HX, Hobdell JR, Windle AH (2001) The effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs. J Mech Phys Solids 49:857–870

    Article  Google Scholar 

  8. Zhu HX, Thorpe SM, Windle AH (2006) The effect of cell irregularity on the high strain compression of 2D Voronoi honeycombs. Int J Solids Struct 43:1061–1078

    Article  Google Scholar 

  9. Zhu HX, Chen CY (2011) Combined effects of relative density and material distribution on the mechanical properties of metallic honeycombs. Mech Mater 43:276–286

    Article  Google Scholar 

  10. Zhu HX (2010) Size-dependent elastic properties of micro- and nano-honeycombs. J Mech Phys Solids 58:696–709

    Article  Google Scholar 

  11. Cammarata RC, Sieradzki K (1994) Surface and interface stresses. Annu Rev Mater Sci 24:215–234

    Article  Google Scholar 

  12. Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139–147

    Article  Google Scholar 

  13. Wang J, Duan HL, Huang ZP, Karihaloo BL (2006) A scaling law for properties of nano-structured materials. Proc R Soc A462:1355–1363

    Article  Google Scholar 

  14. Zhu HX, Karihaloo BL (2008) Size-dependent bending of thin metallic films. Int J Plast 24:956–972

    Article  Google Scholar 

  15. Zhu HX (2008) The effects of surface and initial stresses on the bending stiffness of nanowires. Nanotechnology 19:405703

    Article  Google Scholar 

  16. Zhu HX, Wang J, Karihaloo BL (2009) Effects of surface and initial stresses on the bending stiffness of trilayer plates and nanofilms. J Mech Mater Struct 4:589–604

    Article  Google Scholar 

  17. Toupin RA (1962) Elastic materials with couple stresses. Arch Ration Mech Anal 11:385–414

    Article  Google Scholar 

  18. Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11:415–448

    Article  Google Scholar 

  19. Mindlin RD (1963) Influence of couple-stresses on stress concentration. Exp Mech 3:1–7

    Article  Google Scholar 

  20. Fleck NA, Hutchinson JW (1993) A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids 41:1825–1857

    Article  Google Scholar 

  21. Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46:411–425

    Article  Google Scholar 

  22. Aifantis EC (1999) Strain gradient interpretation of size effects. Int J Fract 95:299–314

    Article  Google Scholar 

  23. Gao H, Huang Y, Nix WD, Hutchinson JW (1999) Mechanism-based strain gradient plasticity—I. Theory. J Mech Phys Solids 47:1239–1263

    Article  Google Scholar 

  24. Anthoine A (2000) Effect of couple-stresses on the elastic bending of beams. Int J Solids Struct 37:1003–1018

    Article  Google Scholar 

  25. Lubarda VA, Markenscoff X (2000) Conservation integrals in couple stress elasticity. J Mech Phys Solids 48:553–564

    Article  Google Scholar 

  26. Haque MA, Saif MTA (2003) Strain gradient effect in nanoscale thin films. Acta Mater 51:3053–3061

    Article  Google Scholar 

  27. Lam DCC, Yang C, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  Google Scholar 

  28. McFarland AW, Colton JS (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15:1060–1067

    Article  Google Scholar 

  29. Biener J, Wittstock A, Zepeda-Ruiz LA, Biener MM, Zielasek V, Kramer D, Viswanath RN, Wessmuller J, Baumer M, Hamza AV (2009) Surface-chemistry-driven actuation in nanoporous gold. Nat Mater 8:47–51

    Article  Google Scholar 

  30. Raiteri R, Butt HJ (1995) Measuring electrochemically induced surface stress with an atomic force microscope. J Phys Chem 99:15728–15732

    Article  Google Scholar 

  31. Weissmuller J, Viswanath RN, Kramer D, Zimmer P, Wurschum R, Gleiter H (2003) Charge-induced reversible strain in a metal. Science 300:312–315

    Article  Google Scholar 

  32. Kramer D, Viswanath RN, Weissmuller J (2004) Surface-stress induced macroscopic bending of nanoporous gold cantilevers. Nano Lett 4:793–796

    Article  Google Scholar 

  33. Haiss W, Nichols RJ, Sass JK, Charle KP (1998) Linear correlation between surface stress and surface charge in anion adsorption on Au(111). J Electroanal Chem 452:199–202

    Article  Google Scholar 

  34. Lakes R (1993) Materials with structural hierarchy. Nature 361:511–515

    Article  Google Scholar 

  35. Taylor CM, Smith CW, Miller W, Evans KE (2011) The effects of hierarchy on the in-plane elastic properties of honeycombs. Int J Solids Struct 24:1330–1339

    Article  Google Scholar 

  36. Zhu HX, Yan L, Zhang R, Qiu XM (2012) Size-dependent and tunable elastic properties of hierarchical honeycombs with square and equilateral triangular cells. Acta Mater 60:4927–4939

    Article  Google Scholar 

  37. Zhu HX, Wang ZB (2013) Size-dependent and tunable elastic and geometric properties of hierarchical nano-porous materials. Sci Adv Mater 5:677–686

    Article  Google Scholar 

  38. Zhu HX, Wang ZB, Fan TX, Zhang D (2012) Tunable bending stiffness, buckling force and natural frequency of nanowires and nanoplates. World J Nano Sci Eng 2:161–169

    Article  Google Scholar 

  39. Diao J, Gall K, Duan ML, Zimmerman JA (2006) Atomistic simulations of the yielding of gold nanowires. Acta Mater 54:643–653

    Article  Google Scholar 

  40. ANSYS finite element software

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. X. Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H.X., Zhang, H.C., You, J.F. et al. The elastic and geometrical properties of micro- and nano-structured hierarchical random irregular honeycombs. J Mater Sci 49, 5690–5702 (2014). https://doi.org/10.1007/s10853-014-8288-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8288-y

Keywords

Navigation