Skip to main content

Advertisement

Log in

Modeling the buckling strength of polypropylene stochastic honeycombs

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of internal architecture on the mechanical properties of stochastic honeycombs was investigated by using four polypropylenes with varying rheological properties. The polymers were first characterized in terms of their thermal and mechanical properties, and then used to fabricate a set of stochastic honeycombs over a range of densities. The internal architecture was characterized by X-ray tomography, and the out-of-plane compressive properties of the stochastic honeycombs were determined. Overall, the strengths varied from 1 to 4 MPa over a core density range of 7–14 %. A thin-plate buckling model was developed to build a predictive strength model. This model was split into a material properties portion (dependent on the polymer stiffness) and an architectural portion (dependent on the fraction of bound webs in the honeycomb). The model was found to serve as a good first step towards predicting the strength of irregular honeycombs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hostetter M, Cordner B, Hibbard GD (2012) Stochastic honeycomb sandwich cores. Compos B 43:1024–1029

    Article  Google Scholar 

  2. Hostetter M, Hibbard GD (2014) Architectural characteristics of stochastic honeycombs fabricated from varying melt strength polypropylenes. J Appl Polym Sci 131:40074

    Article  Google Scholar 

  3. Van Krevelen DW (2009) Properties of Polymers, Their Estimation and Correlation with Chemical Structure, 4th edn. Elsevier, New York

    Google Scholar 

  4. Galeski A (1999) Crystallization. In: Karger-Kocsis J (ed) Polypropylene: an A–Z guide. Kluwer, Dordrecht, pp 135–141

    Chapter  Google Scholar 

  5. Maier C, Calafut T (1998) Polypropylene: the definitive user’s guide and databook. Plast Des Libr, Norwich

    Google Scholar 

  6. Ide F, Hasegawa A (1974) Studies on polymer blend of nylon 6 and polypropylene or nylon 6 and polystyrene using the reaction of polymer. J Appl Polym Sci 18:963–974

    Article  Google Scholar 

  7. Svoboda P, Zeng C, Wang H, Lee LJ, Tomasko DL (2002) Morphology and mechanical properties of polypropylene/organoclay nanocomposites. J Appl Polym Sci 85:1562–1570

    Article  Google Scholar 

  8. Natta G, Corradini P (1960) Structure and properties of isotactic polypropylene. Il Nuovo Cimento Ser 10:40–51

    Article  Google Scholar 

  9. Nielsen AS, Batchelder DN, Pyrz R (2002) Estimation of crystallinity of isotactic polypropylene using Raman spectroscopy. Polymer 43:2671–2676

    Article  Google Scholar 

  10. Asakawa H, Nishida K, Kanaya T, Tosaka M (2013) Giant single crystal of isotactic polypropylene showing near-equilibrium melting temperature. Polym J 45:287–292

    Article  Google Scholar 

  11. Yamada K, Hikosaka M, Toda A, Yamazaki S, Tagashira K (2003) Equilibrium melting temperature of isotactic polypropylene with high tacticity. 2. Determination by optical microscopy. Macromolecules 36:4802–4812

    Article  Google Scholar 

  12. Yamada K, Hikosaka M, Toda A, Yamazaki S, Tagashira K (2003) Equilibrium melting temperature of isotactic polypropylene with high tacticity: 1. Determination by differential scanning calorimetry. Macromolecules 36:4790–4801

    Article  Google Scholar 

  13. Cheng SZD, Janimak JJ, Zhang A, Hsieh ET (1991) Isotacticity effect on crystallization and melting in polypropylene fractions: 1. Crystalline structures and thermodynamic property changes. Polymer 32:648–655

    Article  Google Scholar 

  14. Nakamura K, Shimizu S, Umemoto S, Thierry A, Lotz B, Okui N (2008) Temperature dependence of crystal growth rate for α and β forms of isotactic polypropylene. Polym J 40:915–922

    Article  Google Scholar 

  15. Fried JR (2003) Polymer science and technology, 2nd edn. Prentice Hall PTR, Upper Saddle River

    Google Scholar 

  16. CES Polymer Selector (2013) Granta material intelligence. Cambridge, UK

  17. Perego G, Cella GD, Bastioli C (1996) Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J Appl Polym Sci 59:37–43

    Article  Google Scholar 

  18. van der Wal A, Mulder JJ, Gaymans RJ (1998) Fracture of polypropylene: the effect of crystallinity. Polymer 39:5477–5481

    Article  Google Scholar 

  19. Xu S, Beynon JH, Ruan D, Lu G (2012) Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs. Compos Struct 94:2326–2336

    Article  Google Scholar 

  20. Zhang J, Ashby MF (1992) The out-of-plane properties of honeycombs. Int J Mech Sci 34:475–489

    Article  Google Scholar 

  21. Côté F, Deshpande VS, Fleck NA, Evans AG (2004) The out-of-plane compressive behavior of metallic honeycombs. Mater Sci Eng A 380:272–280

    Article  Google Scholar 

  22. Aminanda Y, Castanié B, Barrau J, Thevenet P (2005) Experimental analysis and modeling of the crushing of honeycomb cores. Appl Compos Mater 12:213–227

    Article  Google Scholar 

  23. Lee HS, Hong SH, Lee JR, Kim YK (2002) Mechanical behavior and failure process during compressive and shear deformation of honeycomb composite at elevated temperatures. J Mater Sci 37:1265–1272. doi:10.1023/A:1014344228141

    Article  Google Scholar 

  24. Liang S, Chen HL (2006) Investigation on the square cell honeycomb structures under axial loading. Compos Struct 72:446–454

    Article  Google Scholar 

  25. Domenico A, Ferdinando A, Costantino M, Simone M, Andrea P, Alessandro R (2013) Statistical finite element analysis of the buckling behavior of honeycomb structures. Compos Struct 105:240–255

    Article  Google Scholar 

  26. Fan X, Verpoest I, Vandepitte D (2006) Finite element analysis of out-of-plane compressive properties of thermoplastic honeycomb. J Sandw Struct Mater 8:437–458

    Article  Google Scholar 

  27. Hohe J, Beckmann C (2012) Probabilistic homogenization of hexagonal honeycombs with perturbed microstructure. Mech Mater 49:13–29

    Article  Google Scholar 

  28. Silva MJ, Hayes WC, Gibson LJ (1995) The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids. Int J Mech Sci 37:1161–1177

    Article  Google Scholar 

  29. Zhu HX, Hobdell JR, Windle AH (2001) Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs. J Mech Phys Solids 49:857–870

    Article  Google Scholar 

  30. Zhu HX, Thorpe SM, Windle AH (2006) The effect of cell irregularity on the high strain compression of 2D Voronoi honeycombs. Int J Solids Struct 43:1061–1078

    Article  Google Scholar 

  31. Lee J, Choi JB, Choi K (1996) Application of homogenization FEM analysis to regular and re-entrant honeycomb structures. J Mater Sci 31:4105–4110. doi:10.1007/BF00352675

    Article  Google Scholar 

  32. Silva MJ, Gibson LJ (1997) The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids. Int J Mech Sci 39:549–563

    Article  Google Scholar 

  33. Albuquerque JM, Fátima Vaz M, Fortes MA (1999) Effect of missing walls on the compression behaviour of honeycombs. Scr Mater 41:167–174

    Article  Google Scholar 

  34. Guo XE, Gibson LJ (1999) Behavior of intact and damaged honeycombs: a finite element study. Int J Mech Sci 41:85–105

    Article  Google Scholar 

  35. Wang AJ, McDowell DL (2003) Effects of defects on in-plane properties of periodic metal honeycombs. Int J Mech Sci 45:1799–1813

    Article  Google Scholar 

  36. Lautensack C, Sych T (2006) 3D Image analysis of open foams using random tesselations. Image Anal Stereol 25:87–93

    Article  Google Scholar 

  37. Mecke KR (2000) Additivity, convexity, and beyond: applications of minkowski functionals in statistical physics. In: Mecke KR, Stoyan D (eds) Lecture notes in Physics vol 554. Springer, Berlin, pp 111–184

  38. Frenkel G, Blumenfeld R, King PR, Blunt MJ (2009) Topological analysis of foams and tetrahedral structures. Adv Eng Mater 11:169–176

    Article  Google Scholar 

  39. Schröder-Turk GE, Mickel W, Kapfer SC et al (2011) Minkowski tensor shape analysis of cellular, granular and porous structures. Adv Mater 23:2535–2553

    Article  Google Scholar 

  40. Michielsen K, De Raedt H (2001) Integral-geometry morphological image analysis. Phys Rep 347:461–538

    Article  Google Scholar 

  41. Ohser J, Mücklich F (2000) Statistical analysis of microstructures in materials science. Wiley, Chichester

    Google Scholar 

  42. Legland D, Kiêu K, Devaux MF (2007) Computation of Minkowski measures on 2D and 3D binary images. Image Anal Stereol 26:83–92

    Article  Google Scholar 

  43. Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Preparation and characterization of poly(l-lactic acid) foams. Polymer 35:1068–1077

    Article  Google Scholar 

  44. Kraynik AM, Reinelt DA, van Swol F (2004) Structure of random foam. Phys Rev Lett 93:208301

    Article  Google Scholar 

  45. Lu L, Peter SJ, Lyman MD et al (2000) In vitro degradation of porous poly(l-lactic acid) foams. Biomaterials 21:1595–1605

    Article  Google Scholar 

  46. Zeschky J, Hofner T, Arnold C, Weibmann R, Bahloul-Hourlier D, Scheffler M, Greil P (2005) Polysilsesquioxane derived ceramic foams with gradient porosity. Acta Mater 53:927–937

    Article  Google Scholar 

  47. Bryan GH (1890) On the stability of a plane plate under thrusts in its own plane, with applications to the “buckling” of the sides of a ship. Proc Lond Math Soc 22:54–67

    Article  Google Scholar 

  48. Gere JM, Timoshenko SP (1961) Theory of elastic stability, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  49. Rinde JA (1970) Poisson’s ratio for rigid plastic foams. J Appl Polym Sci 14:1913–1926

    Article  Google Scholar 

  50. Callister WD, Rethwisch DG (2008) Fundamentals of materials science and engineering: an integrated approach, 3rd edn. Wiley, Hoboken

    Google Scholar 

  51. Zihlif AM, Duckett RA, Ward IM (1978) The Poisson’s ratio of ultra-drawn polyethylene and polypropylene fibres using Michelson interferometry. J Mater Sci 13:1837–1840. doi:10.1007/BF00548754

    Article  Google Scholar 

  52. Van Krevelen DW, Te Nijenhuis K (2009) Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  53. Allen HG, Bulson PS (1980) Background to buckling. McGraw-Hill Book Co., New York

    Google Scholar 

  54. Bloom F, Coffin D (2000) Handbook of thin plate buckling and postbuckling. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn D. Hibbard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hostetter, M., Hibbard, G.D. Modeling the buckling strength of polypropylene stochastic honeycombs. J Mater Sci 49, 8365–8372 (2014). https://doi.org/10.1007/s10853-014-8546-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8546-z

Keywords

Navigation