Skip to main content
Log in

Direct synthesis of nanosized-ZSM-5/SBA-15 analog composites from preformed ZSM-5 precursors for improved catalytic performance as cracking catalyst

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanosized-ZSM-5/SBA-15 analog composites (ZSC) were successfully synthesized in a two-step process from zeolite seed solutions containing intact ZSM-5 nanocrystals (nano-ZSM-5) by high-temperature synthesis in mild acidic media (200 °C, pH 3.5). The ZSC solids exhibit domains of nano-ZSM-5 blended homogeneously with highly condensed, well-ordered mesoporous SBA-15 analogs containing zeolite building units. The content of nano-ZSM-5 phase and SBA-15 analog phase can be controlled by a single synthesis parameter, i.e., the precrystallization time of the initially formed zeolite seed solution. Compared to conventional Al-SBA-15, the acidic properties, particularly the surface density of strong Brønsted acid sites, of the ZSC are significantly improved while its micro-/mesostructures are well maintained even upon steaming at 800 °C for 24 h. The catalytic activity of the ZSC solids compared to that of commercial ZSM-5 and Al-SBA-15 samples was evaluated in the gas phase cracking of cumene and 1,3,5-tri-isopropylbenzene (TIPB) as probe reactions. The results show that the ZSC materials are effective for the conversion of both cumene and TIPB due to the increased density of the Brønsted acid sites with high accessibility provided by well-dispersed nano-ZSM-5 in the mesoporous SBA-15 analog matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97:2373–2419

    Article  Google Scholar 

  2. Pérez-Ramírez J, Christensen CH, Egeblad K, Christensen CH, Groen JC (2008) Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem Soc Rev 37:2530–2542

    Article  Google Scholar 

  3. Tao Y, Kanoh H, Abrams L, Kaneko K (2006) Mesopore-modified zeolites: preparation, characterization, and applications. Chem Rev 106:896–910

    Article  Google Scholar 

  4. Mintova S, Gilson JP, Valtchev V (2013) Advances in nanosized zeolites. Nanoscale 5:6693–6703

    Article  Google Scholar 

  5. Viswanadham N, Kamble R, Singh M, Kumar M, Murali Dhar G (2009) Catalytic properties of nano-sized ZSM-5 aggregates. Catal Today 141:182–186

    Article  Google Scholar 

  6. Morales-Pacheco P, Domínguez JM, Bucio L, Alvarez F, Sedran U, Falco M (2011) Synthesis of FAU(Y)- and MFI(ZSM5)-nanosized crystallites for catalytic cracking of 1,3,5-triisopropylbenzene. Catal Today 166:25–38

    Article  Google Scholar 

  7. Serrano DP, Aguado J, Morales G, Rodríguez JM, Peral A, Thommes M, Epping JD, Chmelka BF (2009) Molecular and meso- and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization. Chem Mater 21:641–654

    Article  Google Scholar 

  8. Waller P, Shan Z, Marchese L, Tartaglione G, Zhou W, Jansen JC, Maschmeyer T (2004) Zeolite nanocrystals inside mesoporous TUD-1: a high-performance catalytic composite. Chem Eur J 10:4970–4976

    Article  Google Scholar 

  9. Frunz L, Prins R, Pirngruber GD (2006) ZSM-5 precursors assembled to a mesoporous structure and its subsequent transformation into a zeolitic phase-from low to high catalytic activity. Micropor Mesopor Mater 88:152–162

    Article  Google Scholar 

  10. Landau MV, Tavor D, Regev O, Kaliya ML, Herskowitz M, Valtchev V, Mintova S (1999) Colloidal nanocrystals of zeolite β stabilized in alumina matrix. Chem Mater 11:2030–2037

    Article  Google Scholar 

  11. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843

    Article  Google Scholar 

  12. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores. Science 279:548–552

    Article  Google Scholar 

  13. Liu Y, Pinnavaia TJ (2002) Aluminosilicate mesostructures with improved acidity and hydrothermal stability. J Mater Chem 12:3179–3190

    Article  Google Scholar 

  14. Čejka J, Mintova S (2007) Perspectives of micro/mesoporous composites in catalysis. Catal Rev Sci Eng 49:457–509

    Article  Google Scholar 

  15. Liu Y, Zhang W, Pinnavaia TJ (2001) Steam stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds. Angew Chem 113:1295–1298

    Article  Google Scholar 

  16. Han Y, Wu S, Sun Y, Li D, Xiao FS, Liu J, Zhang X (2002) Hydrothermally stable ordered hexagonal mesoporous aluminosilicates assembled from a triblock copolymer and preformed aluminosilicate precursors in strongly acidic media. Chem Mater 14:1144–1148

    Article  Google Scholar 

  17. Gu FN, Wei F, Yang JY, Lin N, Lin WG, Wang Y, Zhu JH (2010) New strategy to synthesis of hierarchical mesoporous zeolites. Chem Mater 22:2442–2450

    Article  Google Scholar 

  18. Bagshaw SA, Baxter NI, Brew DRM, Hosie CF, Yuntong N, Jaenicke S, Khuan CG (2006) Highly ordered mesoporous MSU-SBEA/zeolite beta composite material. J Mater Chem 16:2235–2244

    Article  Google Scholar 

  19. Wang J, Groen JC, Yue W, Zhou W, Coppens MO (2008) Facile synthesis of ZSM-5 composites with hierarchical porosity. J Mater Chem 18:468–474

    Article  Google Scholar 

  20. Xia Y, Mokaya R (2004) On the synthesis and characterization of ZSM-5/MCM-48 aluminosilicate composite materials. J Mater Chem 14:863–870

    Article  Google Scholar 

  21. Xia Y, Mokaya R (2004) Are mesoporous silicas and aluminosilicas assembled from zeolite seeds inherently hydrothermally stable? Comparative evaluation of MCM-48 materials assembled from zeolite seeds. J Mater Chem 14:3427–3435

    Article  Google Scholar 

  22. Liu L, Xiong G, Wang X, Cai J, Zhao Z (2009) Direct synthesis of disordered micro–mesoporous molecular sieve. Micropor Mesopor Mater 123:221–227

    Article  Google Scholar 

  23. Lee DS, Liu TK (2001) Synthesis of micropore/mesopore composite materials. React Kinet Catal Lett 72:209–218

    Article  Google Scholar 

  24. Vu XH, Steinfeldt N, Armbruster U, Martin A (2012) Improved hydrothermal stability and acidic properties of ordered mesoporous SBA-15 analogs assembled from nanosized ZSM-5 precursors. Micropor Mesopor Mater 164:120–126

    Article  Google Scholar 

  25. Tokay B, Somer M, Erdem-Şenatalar A, Schüth F, Thompson RW (2009) Nanoparticle silicalite-1 crystallization from clear solutions: nucleation. Micropor Mesopor Mater 118:143–151

    Article  Google Scholar 

  26. Petkov N, Hölzl M, Metzger TH, Mintova S, Bein T (2005) Ordered micro/mesoporous composite prepared as thin films. J Phys Chem B 109:4485–4491

    Article  Google Scholar 

  27. Huang L, Guo W, Deng P, Xue Z, Li Q (2000) Investigation of synthesizing MCM-41/ZSM-5 composites. J Phys Chem B 104:2817–2823

    Article  Google Scholar 

  28. Jacobsen CJH, Madsen C, Janssens TVW, Jakobsen HJ, Skibsted J (2000) Zeolites by confined space synthesis-characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy. Micropor Mesopor Mater 39:393–401

    Article  Google Scholar 

  29. Guo W, Xiong C, Huang L, Li Q (2001) Synthesis and characterization of composite molecular sieves comprising zeolite beta with MCM-41 structures. J Mater Chem 11:1886–1890

    Article  Google Scholar 

  30. Pan D, Yuan P, Zhao L, Liu N, Zhou L, Wei G, Zhang J, Ling Y, Fan Y, Wei B, Liu H, Yu C, Bao X (2009) New understanding and simple approach to synthesize highly hydrothermally stable and ordered mesoporous materials. Chem Mater 21:5413–5425

    Article  Google Scholar 

  31. Xue Z, Zhang T, Ma J, Miao H, Fan W, Zhang Y, Li R (2012) Accessibility and catalysis of acidic sites in hierarchical ZSM-5 prepared by silanization. Micropor Mesopor Mater 151:271–276

    Article  Google Scholar 

  32. Serrano DP, García RA, Vicente G, Linares M, Procházková D, Čejka J (2011) Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materials assembled from MFI protozeolitic units. J Catal 279:366–380

    Article  Google Scholar 

  33. Luan Z, Fournier JA (2005) In situ FTIR spectroscopic investigation of active sites and adsorbate interactions in mesoporous aluminosilicate SBA-15 molecular sieves. Micropor Mesopor Mater 79:235–240

    Article  Google Scholar 

  34. Crepeau G, Montouillout V, Vimont A, Mariey L, Cseri T, Mauge F (2006) Nature, structure and strength of the acidic sites of amorphous silica alumina: an IR and NMR study. J Phys Chem B 110:15172–15185

    Article  Google Scholar 

  35. Chen YM (2006) Recent advances in FCC technology. Powder Technol 163:2–8

    Article  Google Scholar 

  36. Harding RH, Peters AW, Nee JRD (2001) New developments in FCC catalyst technology. Appl Catal A 221:389–396

    Article  Google Scholar 

  37. Corma A, Wojciechowski BW (1982) The catalytic cracking of cumene. Catal Rev Sci Eng 24:1–65

    Article  Google Scholar 

  38. Kumaran GM, Garg S, Soni K, Kumar M, Gupta JK, Sharma LD, Rao KSR, Dhar GM (2008) Synthesis and characterization of acidic properties of Al-SBA-15 materials with varying Si/Al ratios. Micropor Mesopor Mater 114:103–109

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. M.-M. Pohl for recording TEM images, Dr. M. Schneider for XRD measurements, Mr. R. Eckelt for N2 adsorption and desorption studies; Dr. D.-L. Hoang and Dr. N. Steinfeldt are acknowledged for their help to carry out NH3-TPD and WAXS/SAXS measurements, respectively. X.-H Vu would like to thank VIED and LIKAT for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Martin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1460 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, X.H., Bentrup, U., Hunger, M. et al. Direct synthesis of nanosized-ZSM-5/SBA-15 analog composites from preformed ZSM-5 precursors for improved catalytic performance as cracking catalyst. J Mater Sci 49, 5676–5689 (2014). https://doi.org/10.1007/s10853-014-8287-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8287-z

Keywords

Navigation