Skip to main content
Log in

The influence of grain morphology on texture measured after phase transformation in multiphase steels

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present paper, the influence of grain morphology on the textures of multiphase steels measured after phase transformation is investigated. Especially, it is shown that the presence of very elongated grains in the product phase can strongly influence the classical quantitative determination of the texture of this phase from surface measurements (in X-ray diffraction or EBSD). Thus, a method is proposed to deduce the “real” texture from the “apparent” one, measured within a plane. It is then shown that for the investigated multiphase steel, for which phase transformation has occurred either from deformed or recrystallized austenite, this correction provides a very good quantitative agreement between corrected experimental product (ferrite) textures and those obtained from the parent (austenite) phase, assuming a KS or slightly different orientation relationship, without considering any variant selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Using the convention recently proposed by Zhang and Kelly [1], in what follows, the (FCC) phase will be called the matrix (M) phase, whereas the (BCC) phase will be called the product (P) phase.

  2. The vector method is a so-called discrete texture method, which is based on the decomposition of the Euler space into a finite number of boxes of equal volume, taking into account the crystal symmetry. For cubic crystals, the reduced number of 2016 boxes has been shown to be the optimal number to represent with sufficient accuracy the orientation distribution function of moderately textured materials.

References

  1. Zhang MX, Kelly PM (2009) Crystallographic features of phase transformations in solids. Prog Mater Sci 54(8):1101–1170

    Article  Google Scholar 

  2. Ray RK, Jonas JJ, Butrón-Guillén MP, Savoie J (1994) Transformation textures in steels. ISIJ Int 34(12):927–942

    Article  Google Scholar 

  3. Xu PG, Tomota Y, Vogel SC, Suzuki T, Yonemura M, Kamiyama T (2013) Transformation strain and texture evolution during diffusional phase transformation of low alloy steels studied by neutron diffraction. Rev Adv Mater Sci 33(5):389–395

    Google Scholar 

  4. Bain EC, Dunkirk NY (1924) The nature of martensite. Trans AIME 70:25–46

    Google Scholar 

  5. Kurdjumow G, Sachs G (1930) Über den Mechanismus der Stahlhärtung. Zeitschrift für Physik 64:325–343

    Article  Google Scholar 

  6. Nishiyama Z (1934:1935) X-ray investigation of the mechanism of the transformation from face-centred cubic lattice to body-centered cubic. Scientific Report. Tohoku Imperial University, Tokyo, p 637

    Google Scholar 

  7. Wassermann G (1933) Über den Mechanismus der α-γ-Umwandlung des Eisens. Arch Eisenhüttenwes 16:647

    Google Scholar 

  8. Verlinden B, Bocher P, Girault E, Aernoudt E (2001) Austenite texture and bainite/austenite orientation relationships in TRIP steel. Scr Mater 45(8):909–916

    Article  Google Scholar 

  9. Suh DW, Kang JH, Oh KH, Lee HC (2002) Evaluation of the deviation angle of ferrite from the Kudjumov–Sachs relationship in a low carbon steel by EBSD. Scr Mater 46(5):375–378

    Article  Google Scholar 

  10. Cabus C, Réglé H, Bacroix B (2007) Orientation relationship between austenite and bainite in a multiphased steel. Mater Charact 58(4):332–338

    Article  Google Scholar 

  11. Badji R, Bouabdallah M, Bacroix B, Kahloun C, Belkessa B, Maza H (2008) Phase transformation and mechanical behavior in annealed 2205 duplex stainless steel welds. Mater Charact 59(4):447–453

    Article  Google Scholar 

  12. Butrón-Guillén MP, Costa Viana CS, Jonas JJ (1997) A variant selection model for predicting the transformation texture of deformed austenite. Metall Mater Trans A 28(9):1755–1768

    Article  Google Scholar 

  13. Humbert M, Blaineau P, Germain L, Gey N (2011) Refinement of orientation relations occurring in phase transformation based on considering only the orientations of the variants. Scr Mater 64(2):114–117

    Article  Google Scholar 

  14. Gourgues-Lorenzon AF (2007) Application of electron backscatter diffraction to the study of phase transformations. Int Mater Rev 52(2):65–128

    Article  Google Scholar 

  15. Kundu S, Hase K, Badeshia HKDH (2007) Crystallographic texture of stress-affected bainite. Proc R Soc A 463:2309–2328

    Article  Google Scholar 

  16. Wang H-Z, Yang P, Mao W-M, Lu F-Y (2013) Effect of hot deformation of austenite on martensitic transformation in high manganese steel. J Alloy Compd 558:26–33

    Article  Google Scholar 

  17. Miyamoto G, Iwata N, Takayama N, Furuhara T (2012) Quantitative analysis of variant selection in ausformed lath martensite. Acta Mater 60(3):1139–1148

    Article  Google Scholar 

  18. Hilkhuijsen P, Geijselaers HJM, Bor TC, Perdahcıoğlu ES, vd Boogaard AH, Akkerman R (2013) Strain direction dependency of martensitic transformation in austenitic stainless steels: The effect of gamma-texture. Mater Sci Eng A 573:100–105

    Article  Google Scholar 

  19. Cayron C, Barcelo F, Carlan Yd (2010) The mechanisms of the fcc–bcc martensitic transformation revealed by pole figures. Acta Mater 58(4):1395–1402

    Article  Google Scholar 

  20. Brückner G, Pospiech J, Seidl I, Gottstein G (2001) Orientation correlation during diffusional α → γ phase transformation in a ferritic low carbon steel. Scripta Mater 44(11):2635–2640

    Article  Google Scholar 

  21. Lischewski I, Gottstein G (2011) Nucleation and variant selection during the α–γ–α phase transformation in microalloyed steel. Acta Mater 59(4):1530–1541

    Article  Google Scholar 

  22. Réglé H, Maruyama N, Yoshinaga N (2004) Texture and microstructure of the austenite in multiphased steel sheets. In: Bacroix B et al (eds) Recrystallization and grain growth, Pts 1 and 2, Trans Tech Publications, Switzerland, p 11–20

    Google Scholar 

  23. Poudens A, Bacroix B (1996) Recrystallization textures in Al–SiC metal matrix composites. Scr Mater 34(6):847–855

    Article  Google Scholar 

  24. Ruer D, Baro R (1977) A new method for the determination of the texture of materials of cubic structure from incomplete reflection pole figures. Adv X-ray Anal 20:187–200

    Article  Google Scholar 

  25. Bunge HJ, Morris PR (1982) Texture analysis in materials science: mathematical methods. Butterworths, London

    Google Scholar 

  26. Wu KM, Inagawa Y, Enomoto M (2004) Three-dimensional morphology of ferrite formed in association with inclusions in low-carbon steel. Mater Charact 52(2):121–127

    Article  Google Scholar 

  27. Kitahara H, Ueji R, Ueda M, Tsuji N, Minamino Y (2005) Crystallographic analysis of plate martensite in Fe-28.5 at.% Ni by FE-SEM/EBSD. Mater Charact 54(4–5):378–386

    Article  Google Scholar 

  28. Kalwa G, Schnabel E, Schwaab P (1986) Grain structure of bainitic and martensitic steels. Steel Res 57(5):207–215

    Google Scholar 

  29. Lambert-Perlade A, Gourgues AF, Pineau A (2004) Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel. Acta Mater 52(8):2337–2348

    Article  Google Scholar 

  30. Wronski S, Wierzbanowski K, Bacroix B, Chauveau T, Wrobel M, Rauch A, Montheillet F, Wronski M (2009) Texture heterogeneity of asymmetrically cold rolled low carbon steel. Arch Metall Mater 54(1):89–102

    Google Scholar 

  31. Wronski S, Ghilianu B, Chauveau T, Bacroix B (2011) Analysis of textures heterogeneity in cold and warm asymmetrically rolled aluminium. Mater Charact 62(1):22–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bacroix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabus, C., Réglé, H. & Bacroix, B. The influence of grain morphology on texture measured after phase transformation in multiphase steels. J Mater Sci 49, 5646–5657 (2014). https://doi.org/10.1007/s10853-014-8282-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8282-4

Keywords

Navigation