Skip to main content
Log in

Synthesis of titanium dioxide nanotubes via one-step dynamic hydrothermal process

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) nanotubes were synthesized via one-step dynamic hydrothermal process from commercial TiO2 powder. The effects of NaOH concentration, reaction time, reaction temperature, stirring process and washing on the morphology, and the exchange ions of the nanotubes were investigated. The morphology of the nanotubes was characterized in detail with transmission electron microscopy and scanning electron microscope. In the dynamic hydrothermal process, stirring can reduce the reaction time of transformation from particles to nanotubes. The nanotubes were formed when the expected reaction temperature reached to 130 °C. Energy dispersive X-ray analysis was used to determine the exchange of sodium ions and protons in washing process. The Na+ ions attached in the nanotubes were removed completely by HCl aqueous solution and deionized water treatments. X-ray diffraction patterns showed the titanate phase of the as-synthesized sample and anatase phase of TiO2 nanotubes after calcination process at 400 °C for 2 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cui L, Hui KN, Hui KS et al (2012) Facile microwave-assisted hydrothermal synthesis of TiO2 nanotubes. Mater Lett 75:175–178

    Article  Google Scholar 

  2. Chen Y, Crittenden JC, Hackney S et al (2005) Preparation of a novel TiO2-based p–n junction nanotube photocatalyst. Environ Sci Technol 39:1201–1208

    Article  Google Scholar 

  3. Varghese OK, Paulose M, LaTempa TJ et al (2009) High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett 9:731–737

    Article  Google Scholar 

  4. Huang KC, Chien SH (2013) Improved visible-light-driven photocatalytic activity of rutile/titania-nanotube composites prepared by microwave-assisted hydrothermal process. Appl Catal B 140–141:283–288

    Article  Google Scholar 

  5. Park JH, Kim S, Bard AJ (2005) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6:24–28

    Article  Google Scholar 

  6. Liu Z, Zhang X, Nishimoto S et al (2008) Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. Environ Sci Technol 42:8547–8551

    Article  Google Scholar 

  7. Zhao G, Cui X, Liu M et al (2009) Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode. Environ Sci Technol 43:1480–1486

    Article  Google Scholar 

  8. Zhang Y, Fu W, Yang H et al (2008) Synthesis and characterization of TiO2 nanotubes for humidity sensing. Appl Surf Sci 254:5545–5547

    Article  Google Scholar 

  9. Michailowski A, AlMawlawi D, Cheng G et al (2001) Highly regular anatase nanotubule arrays fabricated in porous anodic templates. Chem Phys Lett 349:1–5

    Article  Google Scholar 

  10. Jung JH, Kobayashi H, van Bommel KJC et al (2002) Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. Chem Mater 14:1445–1447

    Article  Google Scholar 

  11. Tian ZR, Voigt JA, Liu J et al (2003) Large oriented arrays and continuous films of TiO2-based nanotubes. J Am Chem Soc 125:12384–12385

    Article  Google Scholar 

  12. Xu H, Zhang Q, Zheng C et al (2011) Application of ultrasonic wave to clean the surface of the TiO2 nanotubes prepared by the electrochemical anodization. Appl Surf Sci 257:8478–8480

    Article  Google Scholar 

  13. Yuan ZY, Su BL (2004) Titanium oxide nanotubes, nanofibers and nanowires. Colloids Surf A 241:173–183

    Article  Google Scholar 

  14. Ma Y, Lin Y, Xiao X et al (2006) Sonication–hydrothermal combination technique for the synthesis of titanate nanotubes from commercially available precursors. Mater Res Bull 41:237–243

    Article  Google Scholar 

  15. Ou HH, Lo SL (2007) Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application. Sep Purif Technol 58:179–191

    Article  Google Scholar 

  16. Viriya-empikul NS, Charinpanitkul T, Kikuchi T, Tanthapanichakoon W (2008) A step towards length control of titanate nanotubes using hydrothermal reaction with sonication pretreatment. Nanotechnology 19:2008

    Article  Google Scholar 

  17. Wang D, Zhou F, Liu Y et al (2008) Synthesis and characterization of anatase TiO2 nanotubes with uniform diameter from titanium powder. Mater Lett 62:1819–1822

    Article  Google Scholar 

  18. Wang Z, Xia D, Chen G et al (2008) The effects of different acids on the preparation of TiO2 nanostructure in liquid media at low temperature. Mater Chem Phys 111:313–316

    Article  Google Scholar 

  19. Wong CL, Tan YN, Mohamed AR (2011) A review on the formation of titania nanotube photocatalysts by hydrothermal treatment. J Environ Manage 92:1669–1680

    Article  Google Scholar 

  20. Preda S, Teodorescu VS, Musuc AM et al (2013) Influence of the TiO2 precursors on the thermal and structural stability of titanate-based nanotubes. J Mater Res 28:294–303

    Article  Google Scholar 

  21. Bando Y, Watanabe M, Sekikawa Y (1980) Structure of orthorhombic Na2Ti9O19-a unit cell twinning of monoclinic Na2Ti9019-determined by 1-MV high-resolution electron microscopy. J Solid State Chem 33:413–419

    Article  Google Scholar 

  22. AaLJ Clearfield (1988) Preparation, structure, and ion-exchange properties of Na4Ti9020–xH20. J Solid State Chem 73:98–106

    Article  Google Scholar 

  23. Weng LQ, Song SH, Hodgson S et al (2006) Synthesis and characterisation of nanotubular titanates and titania. J Eur Ceram Soc 26:1405–1409

    Article  Google Scholar 

  24. Bavykin DV, Parmon VN, Lapkin AA et al (2004) The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J Mater Chem 14:3370–3377

    Article  Google Scholar 

  25. Shi L, Cao L, Liu W et al (2014) A study on partially protonated titanate nanotubes: enhanced thermal stability and improved photocatalytic activity. Ceram Int 40:4717–4723

    Article  Google Scholar 

  26. Seo DS, Lee JK, Kim H (2001) Preparation of nanotube-shaped TiO2 powder. J Cryst Growth 229:428–432

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Science and Technology for their support to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thu Ha Thi Vu or Hang Thi Au.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, T.H.T., Au, H.T., Tran, L.T. et al. Synthesis of titanium dioxide nanotubes via one-step dynamic hydrothermal process. J Mater Sci 49, 5617–5625 (2014). https://doi.org/10.1007/s10853-014-8274-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8274-4

Keywords

Navigation