Skip to main content
Log in

In-situ preparation of porous carbon-supported molybdenum dioxide and its performance in the oxidative desulfurization of thiophene

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Molybdenum dioxide (MoO2) supported on porous carbon (MOPC) for the oxidative desulfurization of thiophene was prepared by in situ procedure, where MoO2 was obtained from thermal conversion of the mixture of polyvinyl alcohol and ammonium molybdate tetrahydrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that formation of MoO2 from bulk MoO3 involved direct reduction from Mo(VI) to Mo(IV) while the surface reduction followed Mo(VI) to Mo(V) and finally to Mo(IV). Hexagonal-based MoO2 platelets were observed to take shape with rising calcination temperature by scanning electron microscope test. Compared with the turnover frequency of MoO3 (2.96 × 10−2 h−1), MOPC calcinated at 700 °C for 90 min exhibited a much higher turnover frequency of 6.15 × 10−2 h−1 on oxidative desulfurization of thiophene. The improved desulfurization efficiency of MOPC would be attributed to the more free electrons and smaller steric hindrance in MoO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jia YH, Li G, Ning GL (2011) Efficient oxidative desulfurization (ODS) of model fuel with H2O2 catalyzed by MoO3/γ-Al2O3 under mild and solvent free conditions. Fuel Process Technol 92:106–111

    Article  Google Scholar 

  2. Li QH, Zhuang LZ, Chen SX, Xu JQ, Li HC (2012) Preparation of carbon-supported zinc ferrite and its performance in the catalytic degradation of mercaptan. Energ Fuel 26:7092–7098

    Article  Google Scholar 

  3. Fox BR, Sun AW, Dauer HB, Male JL, Stewart ML, Tyler DR (2007) Enhanced oxidative desulfurization of model fuels using a film-shear reactor. Fuel 313:18–25

    Google Scholar 

  4. Li FT, Liu RH, Wen JH, Zhao DS, Sun ZM, Liu Y (2009) Desulfurization of dibenzothiophene by chemical oxidation and solvent extraction with Me3NCH2C6H5Cl·2ZnCl2 ionic liquid. Green Chem 11:883–888

    Article  Google Scholar 

  5. Méndez FJ, Llanos A, Echeverría M, Jáuregui R, Villasana Y, Díaz Y, Liendo-Polanco G, Ramos-García MA, Zoltan T, Brito JL (2013) Mesoporous catalysts based on Keggin-type heteropolyacids supported on MCM-41 and their application in thiophene hydrodesulfurization. Fuel 110:249–258

    Article  Google Scholar 

  6. Brunet S, Mey D, Pérot G, Bouchy C, Diehl F (2005) On the hydrodesulfurization of FCC gasoline: a review. Appl Catal A 278:143–172

    Article  Google Scholar 

  7. Srivastava VC (2012) An evaluation of desulfurization technologies for sulfur removal from liquid fuels. RSC Adv 2:759–783

    Article  Google Scholar 

  8. Zhang J, Zhao DS, Wang JL (2009) Photocatalytic oxidation of dibenzothiophene using TiO2/bamboo charcoal. J Mater Sci 44:3112–3117

    Article  Google Scholar 

  9. Song SF, Shen SK, Yang JX (2012) A green synthesis of CTAB-PTP/PAM microhydrogel and its application in oxidation of DBT. J Mater Sci 47:2501–2508

    Article  Google Scholar 

  10. Lizama LY, Klimova TE (2009) SBA-15 modified with Al, Ti, or Zr as supports for highly active NiW catalysts for HDS. J Mater Sci 44:6617–6628

    Article  Google Scholar 

  11. Zhao DS, Sun ZM, Li FT, Liu R, Shan HD (2008) Oxidative desulfurization of thiophene catalyzed by (C4H9)4NBr·2C6H11NO coordinated ionic liquid. Energy Fuel 22:3065–3069

    Article  Google Scholar 

  12. Jiang X, Li HM, Zhu WS, He LN, Shu HM, Lu JD (2009) Deep desulfurization of fuels catalyzed by surfactant-type decatungstates using H2O2 as oxidant. Fuel 88:431–436

    Article  Google Scholar 

  13. Sengupta A, Kamble PD, Basu JK, Sengupta S (2012) Kinetic study and optimization of oxidative desulfurization of benzothiophene using mesoporous titanium silicate-1 catalyst. Ind Eng Chem Res 51:147–157

    Article  Google Scholar 

  14. Campos-Martin JM, Capel-Sanchez MC, Perez-Presas P, Fierro JLG (2010) Oxidative processes of desulfurization of liquid fuels. J Chem Technol Biotechnol 85:879–890

    Article  Google Scholar 

  15. Li BS, Liu ZX, Liu JJ, Zhou ZY, Gao XH, Pang XM, Sheng HT (2010) Preparation, characterization and application in deep catalytic ODS of the mesoporous silica pillared clay incorporated with phosphotungstic acid. J Colloid Interface Sci 348:219–226

    Article  Google Scholar 

  16. Shi YF, Guo BK, Corr SA, Shi QH, Hu YS, Heier KR, Chen LQ, Seshadri R, Stucky GD (2009) Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett 9:4215–4220

    Article  Google Scholar 

  17. Luo W, Hu XL, Sun YM, Huang YH (2011) Electrospinning of carbon-coated MoO2 nanofibers with enhanced lithium-storage properties. Phys Chem Chem Phys 13:16735–16740

    Article  Google Scholar 

  18. Marin Flores OG, Ha S (2009) Activity and stability studies of MoO2 catalyst for the partial oxidation of gasoline. Appl Catal A 352:124–132

    Article  Google Scholar 

  19. Katrib A, Leflaive P, Hilaire L, Maire G (1996) Molybdenum based catalysts. I. MoO2 as the active species in the reforming of hydrocarbons. Catal Lett 38:95–99

    Article  Google Scholar 

  20. Seng KH, Du GD, Li L, Chen ZX, Liu HK, Guo ZP (2012) Facile synthesis of graphene–molybdenum dioxide and its lithium storage properties. J Mater Chem 22:16072–16077

    Article  Google Scholar 

  21. Hu B, Mai LQ, Chen W, Fan Y (2009) From MoO3 nanobelts to MoO2 nanorods—structure transformation and electrical transport. ACS Nano 3:478–482

    Article  Google Scholar 

  22. Chen XY, Zhang ZJ, Li XX, Shi CG, Li XL (2006) Selective synthesis of metastable MoO2 nanocrystallites through a solution-phase approach. Chem Phys Lett 418:105–108

    Article  Google Scholar 

  23. Wei X, Li HC, Yuan C, Li QH, Chen SX (2009) Preparation of nano-ZnO supported on porous carbon and the growth mechanism. Microporous Mesoporous Mater 118:307–313

    Article  Google Scholar 

  24. Xu Y, Yi R, Yuan B, Wu XF, Dunwell M, Lin QL, Fei L, Deng SG, Andersen P, Wang DH, Luo HM (2012) High capacity MoO2/graphite oxide composite anode for lithium-ion batteries. J Phys Chem Lett 3:309–314

    Article  Google Scholar 

  25. Dou J, Zeng HC (2012) Preparation of Mo-embedded mesoporous carbon microspheres for friedel–crafts alkylation. J Phys Chem C 116:7767–7775

    Article  Google Scholar 

  26. Choi J-G, Thompson LT (1996) XPS study of as-prepared and reduced molybdenum oxides. Appl Surf Sci 93:143–149

    Article  Google Scholar 

  27. Helveg S, Lauritsen JV, Lægsgaard E, Stensgaard I, Nørskov JK, Clausen BS, Topsøe H, Besenbacher F (2000) Atomic-scale structure of single-layer MoS2 nanoclusters. Phys Rev Lett 84:951–954

    Article  Google Scholar 

  28. Zhang BY, Jiang ZX, Li J, Zhang YN, Lin F, Liu Y, Li C (2012) Catalytic oxidation of thiophene and its derivatives via dual activation for ultra-deep desulfurization of fuels. J Catal 287:5–12

    Article  Google Scholar 

  29. Bakar WAWA, Ali R, Kadir AAA, Mokhtar WNAW (2012) Effect of transition metal oxides catalysts on oxidative desulfurization of model diesel. Fuel Process Technol 101:78–84

    Article  Google Scholar 

  30. Xu D, Zhu WS, Li HM, Zhang JT, Zou F, Shi H, Yan YS (2009) Oxidative desulfurization of fuels catalyzed by V2O5 in ionic liquids at room temperature. Energy Fuel 23:5929–5933

    Article  Google Scholar 

  31. García-Gutiérrez JL, Fuentes GA, Hernández-Terán ME, García P, Murrieta-Guevara F, Jiménez-Cruz F (2008) Ultra-deep oxidative desulfurization of diesel fuel by the Mo/Al2O3-H2O2 system: the effect of system parameters on catalytic activity. Appl Catal A 334:366–373

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (Grant No. 51173211), Science and Technology Project of Guangdong Province (2011B090400030, 2011BZ100202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuixia Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, L., Li, Q., Chen, S. et al. In-situ preparation of porous carbon-supported molybdenum dioxide and its performance in the oxidative desulfurization of thiophene. J Mater Sci 49, 5606–5616 (2014). https://doi.org/10.1007/s10853-014-8273-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8273-5

Keywords

Navigation