Skip to main content
Log in

Modeling the influence of particulate geometry on the thermal conductivity of composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of particle shape and orientation on the thermal conductivity of low volume, particulate composites was examined through two-dimensional numerical simulations using the finite element method, FEM. The simulations demonstrate that the conductivity of such composites is influenced by not only the relative volume and conductivity of the embedded particles, but also their general shape, elongation, and orientation relative to the direction of global heat flow. The functional form of the Halpin–Tsai equation was utilized to characterize the composite thermal conductivity through a derived expression of the geometric distribution factor, ζ. The proposed expression of ζ differs from commonly assumed values and is shown to be highly dependent on the shape of the embedded particles. This approach was further extended to examine and explicitly characterize the anisotropic behavior of composites containing multiple, randomly distributed particles of a uniform size and shape based on their relative orientation. This work demonstrates the viability of using numerical tools to examine composites with complex geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Voigt W (1906) Bestimmung der Elastizitätskonstanten von Eisenglanz. Ann Phys 327:129–140

    Article  Google Scholar 

  2. Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM 9:49–58

    Article  Google Scholar 

  3. Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13:213–222

    Article  Google Scholar 

  4. Kuster GT, Toksöz MN (1974) Velocity and attenuation of seismic waves in two-phase media: part I. Theoretical formulations. Geophysics 39:587–606

    Article  Google Scholar 

  5. Maxwell JC (1881) A treatise on electricity and magnetism, vol 1. Clarendon press, Dover

    Google Scholar 

  6. O’Connell RJ, Budiansky B (1974) Seismic velocities in dry and saturated cracked solids. J Geophys Res 79:5412–5426

    Article  Google Scholar 

  7. Wang J, Carson JK, North MF, Cleland DJ (2006) A new approach to modelling the effective thermal conductivity of heterogeneous materials. Int J Heat Mass Transf 49:3075–3083

    Article  Google Scholar 

  8. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A 241:376–396

    Article  Google Scholar 

  9. Hatta H, Taya M (1985) Effective thermal conductivity of a misoriented short fiber composite. J Appl Phys 58:2478–2486

    Article  Google Scholar 

  10. Hashin Z, Shtrikman A (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33:3125–3131

    Article  Google Scholar 

  11. Hashin Z (1968) Assessment of the self consistent scheme approximation: conductivity of particulate composites. J Compos Mater 2:284–300

    Article  Google Scholar 

  12. Szymkiewicz A (2005) Calculating effective conductivity of heterogeneous soils by homogenization. Arch Hydro-Eng Environ Mech 52:111–130

    Google Scholar 

  13. Halpin JC, Kardos JL (1976) The Halpin–Tsai equations: a review. Polym Eng Sci 16:344–352

    Article  Google Scholar 

  14. Hermans JJ (1967) The elastic properties of fiber reinforced materials when the fibers are aligned. Proc K Ned Akad Wet B 70:1–9

    Google Scholar 

  15. Lewis TB, Nielsen LE (1970) Dynamic mechanical properties of particulate-filled composites. J Appl Polym Sci 14:1449–1471

    Article  Google Scholar 

  16. Progelhof RC, Throne JL, Ruetsch RR (1976) Methods for predicting the thermal conductivity of composite systems: a review. Polym Eng Sci 16:615–625

    Article  Google Scholar 

  17. Iorga L, Pan Y, Pelegri AA (2008) Numerical characterization of material elastic properties for random fiber composites. J Mech Mater Struct 3:1279–1298

    Article  Google Scholar 

  18. Kari S, Berger H, Gabbert U (2007) Numerical evaluation of effective material properties of randomly distributed short cylindrical fibre composites. Comput Mater Sci 39:198–204

    Article  Google Scholar 

  19. Michel JC, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172:109–143

    Article  Google Scholar 

  20. Oda M, Nemat-Nasser S, Konishi J (1985) Stress-induced anisotropy in granular masses. Soils Found 25:85–97

    Article  Google Scholar 

  21. Bonnecaze RT, Brady JF (1990) A method for determining the effective conductivity of dispersions of particles. Proc R Soc Lond 430:285–313

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric W. Tiedje.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiedje, E.W., Guo, P. Modeling the influence of particulate geometry on the thermal conductivity of composites. J Mater Sci 49, 5586–5597 (2014). https://doi.org/10.1007/s10853-014-8268-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8268-2

Keywords

Navigation