Skip to main content
Log in

Synthesis and physical–chemical properties of N-containing nanoporous carbons

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Meso- and microporous nitrogen-containing carbons, characterized by homogeneous meso- (V = 1.00 cm3/g, D = 3.5 nm) and microporous (V up to 0.26 cm3/g, D ≈ 0.5 nm) structure, and the presence of basic groups (up to 1.7 mmol/g) were obtained by matrix and bulk carbonization of sucrose in the presence of melamine or urea. It is shown that obtained N-containing microporous carbons possess good interfacial capacitance (0.21 F/m2) and they are characterized with stability during repeated charge–discharge cycles. Synthesized N-containing nanoporous carbons show higher adsorption of carbon dioxide (up to 6.3 mmol/g at −20 °C) than the samples without nitrogen (up to 3.9 mmol/g at −20 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim J, Choi M, Ryoo R (2008) Synthesis of mesoporous carbons with controllable N-content and their supercapacitor properties. Bull Korean Chem Soc 29(2):413–416

    Article  Google Scholar 

  2. Hulicova-Jurcakova D, Seredych M, Jin Y et al (2010) Specific anion and cation capacitance in porous carbon blacks. Carbon 48:1767–1778

    Article  Google Scholar 

  3. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774–1785

    Article  Google Scholar 

  4. Lota G, Grzyb B, Machnikowska H et al (2005) Effect of nitrogen in carbon electrode on the supercapacitor performance. Chem Phys Lett 404:53–58

    Article  Google Scholar 

  5. Hulicova D, Kodama M, Hatori H (2006) Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors. Chem Mater 18:2318–2326

    Article  Google Scholar 

  6. Lu A, Kiefer A, Schmidt W et al (2004) Synthesis of polyacrylonitrile-based ordered mesoporous carbon with tunable pore structures. Chem Mater 16:100–103

    Article  Google Scholar 

  7. Shin Y, Fryxell GE, Johnson CA et al (2008) Templated synthesis of pyridine functionalized mesoporous carbons through the cyclotrimerization of diethynylpyridines. Chem Mater 20:981–986

    Article  Google Scholar 

  8. Vinu A, Ariga K, Mori T et al (2005) Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride. Adv Mater 17:1648–1652

    Article  Google Scholar 

  9. Vinu A, Terrones M, Golberg D et al (2005) Synthesis of mesoporous BN and BCN exhibiting large surface areas via templating methods. Chem Mater 17:5887–5890

    Article  Google Scholar 

  10. Yang Z, Xia Y, Sun X, Mokaya R (2006) Preparation and hydrogen storage properties of zeolite-templated carbon materials nanocast via chemical vapor deposition: effect of the zeolite template and nitrogen doping. J Phys Chem B 110:18424–18431

    Article  Google Scholar 

  11. Xia Y, Mokaya R (2005) Generalized and facile synthesis approach to N-doped highly graphitic mesoporous carbon materials. Chem Mater 17:1553–1560

    Article  Google Scholar 

  12. Yang C-M, Weidenthaler C, Spliethoff B et al (2005) Facile template synthesis of ordered mesoporous carbon with polypyrrole as carbon precursor. Chem Mater 17:355–358

    Article  Google Scholar 

  13. Gregg SG, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic Press, London

    Google Scholar 

  14. Dollimore D, Heal GR (1964) An improved method for the calculation of pore size distribution from adsorption data. J Appl Chem 14:109–114

    Article  Google Scholar 

  15. Horvath G, Kawazoe K (1983) Method for calculation of effective pore size distribution in molecular sieve carbon. J Chem Eng Jpn 16:470–475

    Article  Google Scholar 

  16. Devallencourt C, Saiter JM, Fafet A et al (1995) Thermogravimetry/Fourier transform infrared coupling investigations to study the thermal stability of melamine formaldehyde resin. Thermochim Acta 259:143–151

    Article  Google Scholar 

  17. Schaber PM, Colson J, Higgins S et al (2004) Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim Acta 424:131–142

    Article  Google Scholar 

  18. Lysenko ND, Yaremov PS, Ilyin VG, Ovcharova MV (2011) Conditions and features of matrix and bulk carbonization of the organic precursors. J Mater Sci 46:4465–4470. doi:10.1007/s10853-011-5339-5

    Article  Google Scholar 

  19. Tarkovskaya IA (1981) Oxidized carbon (in Russian). Naukova Dumka, Kiev

    Google Scholar 

  20. Kim JI, Park SJ (2011) Effect of nitrogen-containing groups on enhanced capacitive behaviors of multi-walled carbon nanotubes. J Solid State Chem 184:2184–2189

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataliya D. Shcherban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shcherban, N.D., Filonenko, S.M., Yaremov, P.S. et al. Synthesis and physical–chemical properties of N-containing nanoporous carbons. J Mater Sci 49, 4354–4362 (2014). https://doi.org/10.1007/s10853-014-8133-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8133-3

Keywords

Navigation