Skip to main content
Log in

Fabrication and characterization of superparamagnetic nanocomposites based on epoxy resin and surface-modified γ-Fe2O3 by epoxide functionalization

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the effect of modified epoxide-terminated γ-Fe2O3 on the magnetic, mechanical, and thermal properties of epoxy nanocomposite was investigated. The γ-Fe2O3 nanoparticles were prepared via a wet chemical approach, surface modified with 3-glycidoxypropyltrimethoxysilane (GPTMS), and characterized by particle size analyzer, XRD, FT-IR, and TGA techniques. The catalytic effect of γ-Fe2O3 on the cure reaction temperature of epoxy/triethylenetetramine (TETA) was determined by differential scanning calorimeter (DSC). The glass transition temperature (T g) of nanocomposite containing 5 wt% modified γ-Fe2O3 increased slightly (12 °C), while the initial decomposition temperature (T ID) did not show improvement. Transmission electron microscopy (TEM) showed improvement in dispersion of surface-modified γ-Fe2O3 nanoparticles in the resin matrix. The effect of interfacial bonding between modified γ-Fe2O3 and epoxy resin, via crosslink reactions, on the mechanical properties of nanocomposite such as flexural and tensile strength was studied, and the fractured surface of samples was investigated by scanning electron microscopy (SEM). Comparing with the mechanical properties of neat epoxy resin, tensile, and flexural strength of 10 wt% modified γ-Fe2O3/epoxy nanocomposite increased 20 and 19 %, respectively, while tensile and flexural strength of 10 wt% unmodified/epoxy nanocomposite decreased slightly. The saturation magnetization (M s) of 5 wt% modified γ-Fe2O3/epoxy nanocomposites with superparamagnetic property was approximately 80 % greater than that of unmodified γ-Fe2O3/epoxy nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zunjarrao SC, Singh RP (2006) Characterization of the fracture behavior of epoxy reinforced with nanometer and micrometer sized aluminum particles. Compos Sci Tech 66:2296–2305

    Article  Google Scholar 

  2. Al-Turaif HA (2010) Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin. Prog Org Coat 69:241–246

    Article  Google Scholar 

  3. Yuan J, Zhou S, Gu G, Wu L (2005) Effect of the particle size of nanosilica on the performance of epoxy/silica composite coatings. J Mater Sci 40:3927–3932. doi:10.1007/s10853-005-0714-8

    Article  Google Scholar 

  4. Gu H, Huang Y, Zhang X, Wang Q, Zhu J, Shao L, Haldolaarachchige N, Young DP, Wei S, Guo Z (2012) Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properties. Polymer 53:801–809

    Article  Google Scholar 

  5. Deng S, Ye L, Friedrich K (2007) Fracture behaviours of epoxy nanocomposites with nano-silica at low and elevated temperatures. J Mater Sci 42:2766–2774. doi:10.1007/s10853-006-1420-x

    Article  Google Scholar 

  6. Zhu J, Wei S, Ryu J, Budhathoki M, Liang G, Guo Z (2010) In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. J Mater Chem 20:4937–4948

    Article  Google Scholar 

  7. Al-Qadhi M, Merah N, Gasem ZM (2013) Mechanical properties and water uptake of epoxy–clay nanocomposites containing different clay loadings. J Mater Sci 48:3798–3804. doi:10.1007/s10853-013-7180-5

    Article  Google Scholar 

  8. Zhou W, Yu D (2013) Fabrication, thermal, and dielectric properties of self-passivated Al/epoxy nanocomposites. J Mater Sci 48:7960–7968. doi:10.1007/s10853-013-7606-0

    Article  Google Scholar 

  9. Zhu J, Wei S, Yadav A, Guo Z (2010) Rheological behaviors and electrical conductivity of epoxy resin nanocomposites suspended with in situ stabilized carbon nanofibers. Polymer 51:2643–2651

    Article  Google Scholar 

  10. Seyhan AT, Sun Z, Deitzel J, Tanoglu M, Heider D (2009) Cure kinetics of vapor grown carbon nanofiber (VGCNF) modified epoxy resin suspensions and fracture toughness of their resulting nanocomposites. Mater Chem Phys 118:234–242

    Article  Google Scholar 

  11. Mohan TP, Kumar MR, Velmurugan R (2006) Thermal, mechanical and vibration characteristics of epoxy-clay nanocomposites. J Mater Sci 41:5915–5925. doi:10.1007/s10853-006-0278-2

    Article  Google Scholar 

  12. Wang Z, Wu L, Chen M, Zhou S (2009) Facile synthesis of superparamagnetic fluorescent Fe3O4/ZnS hollow nanospheres. J Am Chem Soc 131:11276–11277

    Article  Google Scholar 

  13. Singh K, Ohlan A, Kotnala RK, Bakhshi AK, Dhawan SK (2008) Dielectric and magnetic properties of conducting ferromagnetic composite of polyaniline with γ-Fe2O3 nanoparticles. Mater Chem Phys 112:651–658

    Article  Google Scholar 

  14. Chen X, Wei S, Gunesoglu C, Zhu J, Southworth CS, Sun L, Karki AB, Young DP, Guo Z (2010) Electrospun magnetic fibrillar polystyrene nanocomposites reinforced with nickel nanoparticles Macromol. Chem Phys 211:1775–1783

    Google Scholar 

  15. Boon MS, Saw WPS, Mariatti M (2012) Magnetic, dielectric and thermal stability of Ni-Zn ferrite- epoxy composite thin films for electronic applications. J Magn Magn Mater 324:755–760

    Article  Google Scholar 

  16. Zhang D, Karki AB, Rutman D, Young DP, Wang A, Cocke D, Ho TH, Guo Z (2009) Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: Fabrication and property analysis. Polymer 50:4189–4198

    Article  Google Scholar 

  17. Lee YJ, Jun KW, Park JP, Potdar HS, Chikate RC (2008) A simple chemical route for the synthesis of γ-Fe2O3 nano-particles in organic solvents via an iron-hydroxy oleate precursor. J Ind Eng Chem 14:38–44

    Article  Google Scholar 

  18. Ramajo LA, Cristobal AA, Botta PM, Lopez JMP, Reboredo MM, Castro MS (2009) Dielectric and magnetic response of Fe3O4/epoxy composites. Compos A Appl Sci Manuf 40:388–393

    Article  Google Scholar 

  19. Thorpe AN, Senftle FE, Holt M, Grant J (2000) Magnetization, micro-X-ray fluorescence, and transmission electron microscopy studies of low concentration of nanoscale Fe3O4 particles in epoxy resin. J Mater Res 15:2488–2493

    Article  Google Scholar 

  20. Zhu J, Wei S, Ryu J, Sun L, Luo Z, Guo Z (2010) Magnetic epoxy resin nanocomposites reinforced with core-shell structured Fe@FeO nanoparticles: fabrication and property analysis. ACS Appl Mater Interfaces 2:2100–2107

    Article  Google Scholar 

  21. Gonzalez M, Fabiani IM, Baselga J, Pozuelo J (2012) Magnetic nanocomposites based on hydrogenated epoxy resin. Mater Chem Phys 132:618–624

    Article  Google Scholar 

  22. Darezereshki E, Ranjbar M, Bakhtiari F (2010) One-step synthesis of maghemite (γ-Fe2O3) nano-particles by wet chemical method. J Alloy Compd 502:257–260

    Article  Google Scholar 

  23. Chen G, Zhou S, Gu G, Yang H, Wu L (2005) Effects of surface properties of colloidal silica particles on redispersibility and properties of acrylic-based polyurethane/silica composites. J Colloid Interface Sci 281:339–350

    Article  Google Scholar 

  24. Jiang W, Jin FL, Park SJ (2012) Thermo-mechanical behaviors of epoxy resin reinforced with nano-Al2O3 particles. J Ind Eng Chem 18:594–596

    Article  Google Scholar 

  25. Wei B, Song S, Cao H (2011) Strengthening of basalt fibers with nano-SiO2–epoxy composite coating. Mater Des 32:4180–4186

    Article  Google Scholar 

  26. Ghaemy M, Barghamadi M (2009) Nonisothermal cure kinetics of DGEBA with 2,7-diaminofluorene. J Appl Polym Sci 112:1311–1318

    Article  Google Scholar 

  27. Zhou T, Gu M, Jin Y, Wang J (2005) Effect of nano-sized carborondum particles and amino silane coupling agent on the cure reaction kinetics of DGEBA/EMI-2,4 system. Polymer 46:6216–6225

    Article  Google Scholar 

  28. Chen CH, Jian YJ, Yen FS (2009) Preparation and characterization of epoxy/γ-aluminum oxide nanocomposites. Compos A Appl Sci Manuf 40:463–468

    Article  Google Scholar 

  29. Wang DH, Sihn S, Roy AK, Beak JB, Tan LS (2010) Nanocomposites based on vapor-grown carbon nanofibers and an epoxy: functionalization, preparation and characterization. Eur Polym J 46:1404–1416

    Article  Google Scholar 

  30. Wang J, Sun J, Sun Q, Chen Q (2003) One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater Res Bull 38:1113–1118

    Article  Google Scholar 

  31. Huang Z, Tang F (2004) Preparation, structure, and magnetic properties of polystyrene coated by Fe3O4 nanoparticles. J Colloid Interface Sci 275:142–147

    Article  Google Scholar 

  32. Park JO, Rhee KY, Park SJ (2010) Silane treatment of Fe3O4 and its effect on the magnetic and wear properties of Fe3O4/epoxy nanocomposites. Appl Surf Sci 256:6945

    Article  Google Scholar 

  33. Guo Z, Lei K, Li Y, Ng HW, Prikhodko S, Hahn HT (2008) Fabrication and characterization of iron oxide nanoparticles reinforced vinyl-ester resin nanocomposites. Compos Sci Tech 68:1513–1520

    Article  Google Scholar 

  34. Jiang T, Kuila T, Kim NH, Ku BC, Lee JH (2013) Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites. Compos Sci Tech 79:115–125

    Article  Google Scholar 

  35. Nadler M, Werner J, Mahrholz T, Riedel U, Hufenbach W (2009) Effect of CNT surface fictionalization on the mechanical properties of multi-walled carbon nanotube/epoxy-composites. Compos A Appl Sci Manuf 40:932–937

    Article  Google Scholar 

  36. Chaowasakoo T, Sombatsompop N (2007) Mechanical and morphological properties of fly ash/epoxy composites using conventional thermal and microwave curing methods. Compos Sci Tech 67:2282–2292

    Article  Google Scholar 

  37. Chatterjee A, Islam MS (2008) Fabrication and characterization of TiO2-epoxy nanocomposite. Mater Sci Eng A 487:574–585

    Article  Google Scholar 

  38. Nie Y, Hübert T (2012) Surface modification of carbon nanofibers by glycidoxysilane for altering the conductive and mechanical properties of epoxy composites. Compos A Appl Sci Manuf 43:1357–1364

    Article  Google Scholar 

  39. Geng Y, Liu ML, Li J, Shi XM, Kim JK (2008) Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Compos A Appl Sci Manuf 39:1876–1883

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms Maasoomeh Bazzar for her suggestion and fruitful comments during the realization of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousa Ghaemy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekhavat Pour, Z., Ghaemy, M. Fabrication and characterization of superparamagnetic nanocomposites based on epoxy resin and surface-modified γ-Fe2O3 by epoxide functionalization. J Mater Sci 49, 4191–4201 (2014). https://doi.org/10.1007/s10853-014-8114-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8114-6

Keywords

Navigation