Skip to main content
Log in

Electronic and phonon properties of the full-Heusler alloys X2YAl (X = Co, Fe and Y = Cr, Sc): a density functional theory study

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

First-principle calculations have been carried out on the structural, electronic, elastic, and phonon properties of the full-Heusler alloys X2YAl (X = Co, Fe and Y = Cr, Sc). The calculations predict that the Fe2CrAl and Co2CrAl are half-metallic ferromagnets at the equilibrium lattice constant with a minority-spin energy gap of 0.2912 and 0.668 eV, respectively. Fe2ScAl exhibit a gap in the majority density of states, with a few states at the Fermi level and about 0.217 states eV−1, unlike the other Heusler compounds; due to this, it is considered a false half metal, and Co2ScAl is considered a non-magnetic compound. The elastic constants were derived from the slopes of the acoustic branches in the phonon-dispersion curve. The calculated lattice constants, bulk modulus, and first-order pressure derivative of the bulk modulus are reported for the L21 structure and compared with previous values. Phonon-dispersion curves were obtained using the first-principle linear-response approach of the density-functional perturbation theory. The specific heat capacity at a constant volume C V of X2YAl (X = Co, Fe and Y = Cr, Sc) alloys is calculated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Heusler F (1903) “Über magnetische Manganlegierungen” Verhandlungen der Deutschen Physikalischen Gesellschaft (in German) 5:219

  2. Žutić I, Fabian J, Sarma SD (2004) Spintronics: fundamentals and applications. Rev Mod Phys 76:323–410

    Article  Google Scholar 

  3. Wolf SA, Treger D (2000) Spintronics: a new paradigm for electronics for the new millennium. IEEE Trans Magn 36(5):2748–2751

    Article  Google Scholar 

  4. de Groot RA, Mueller FM, van Engen PG, Buschow KHJ (1983) New class of materials: half-metallic ferromagnets. Phys Rev Lett 50:2024–2027

    Article  Google Scholar 

  5. Kobayashi K-I, Kimura T, Sawada H, Terakura K, Tokura Y (1998) Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Lett Nat 395:677–680

    Article  Google Scholar 

  6. Ono K, Okabayashi J, Mizuguchi M, Oshima M, Fujimori A, Akinaga H (2002) Fabrication, magnetic properties, and electronic structures of nanoscale zinc-blende MnAs dots. J Appl Phys 91:8088–8092

    Article  Google Scholar 

  7. Schwarz K (1986) CrO2 predicted as a half-metallic ferromagnet. J Phys F Met Phys 16:L211–L215

    Article  Google Scholar 

  8. Xie W-H, Xu Y-Q, Liu B-G (2003) Half-metallic ferromagnetism and structural stability of zincblende phases of the transition-metal chalcogenides. Phys Rev Lett 91:037204–037207

    Article  Google Scholar 

  9. Shoren H, Ikemoto F, Yoshida K, Tanaka N, Motizuki K (2001) First principles electronic band calculation of (Zn, Cr)Te, (Zn, Cr)Se and (Zn, Cr)S. Phys E 10:242–246

    Article  Google Scholar 

  10. Niu XL, Wang LJ (2012) Effect of transition-metal substitution on electronic and mechanical properties of Fe3Al: first-principles calculations. Comput Mater Sci 53:128–132

    Article  Google Scholar 

  11. Zhang M, Brück E, de Boer FR, Wu G (2004) Electronic structure, magnetism, and transport properties of the Heusler alloy Fe2CrAl. J Magn Magn Mater 283:409–414

    Article  Google Scholar 

  12. Shreder E, Streltsov SV, Svyazhin A, Makhnev A, Marchenkov VV, Lukoyanov A, Weber HW (2008) Evolution of the electronic structure and physical properties of Fe2MeAl (Me = Ti, V, Cr) Heusler alloys. J Phys Condens Matter 20:045212

    Article  Google Scholar 

  13. Mizutani S, Ishida S, Fujii S, Asano S (2007) Half-metallicity and stability of ferromagnetism in (Fe1−xCox)2CrZ (Z = s, p elements). Mater Trans 48:748–753

    Article  Google Scholar 

  14. Paduani C, Pöttker WE, Ardisson JD, Schaf J, Takeuchi AY, Yoshida MI, Soriano S, Kalisz M (2007) Mössbauer effect and magnetization studies of the Fe2 + xCr1 − xAl system in the L21 (X2YZ) structure. J Phys Condens Matter 19:156204

    Article  Google Scholar 

  15. Lakshmi N, Venugopalan K, Varma J (2002) Mössbauer studies of hyperfine fields in disordered the Fe2CrAl. Pramana J Phys 59(3):531–537

    Article  Google Scholar 

  16. Umetsu RY, Morimoto N, Nagasako N, Kainuma R, Kanomata T (2012) Annealing temperature dependence of crystal structures and magnetic properties of Fe2CrAl and Fe2CrGa Heusler alloys. J Alloy Compd 528:34–39

    Article  Google Scholar 

  17. Kellou A, Fenineche NE, Grosdidier T, Aourag H, Coddet C (2003) Structural stability and magnetic properties in X2AlX’ (X = Fe Co, Ni;X’ = Ti, Cr) Heusler alloys from quantum mechanical calculations. J Appl Phys 94(5):3292–3298

    Article  Google Scholar 

  18. Kim KW, Hyun YH, Park SY, Lee YP, Rhee JY, Kudryavtsev YV, Oksenenko VA, Dubowik J (2008) Electronic structures and magnetic properties of Co2CrAl films. J Korean Phys Soc 53(5):2475–2478

    Google Scholar 

  19. Ram S, Chauhan MR, Agarwal K, Kanchana V (2011) Ab initio study of Heusler alloys Co2XY (X = Cr, Mn, Fe; Y = Al, Ga) under high pressure. Philos Mag Lett 91(8):545–553

    Article  Google Scholar 

  20. Dai X, Joudan M, Felser C (2009) High spin polarization in Co2CrAl–Cr super lattice. J Phys D Appl Phys 42:084014

    Article  Google Scholar 

  21. Luo H, Ma L, Zhu Z, Wu G, Liu H, Qu J, Li Y (2008) Ab initio study of Cr substitution for Co in the Heusler alloy Co2CrAl: half-metallicity and adjustable magnetic moments. Phys B 403:1797–1802

    Article  Google Scholar 

  22. Rai DP, Shankar A, Sandeep, Ghimire MP, Thapa RK (2012) Electronic structure and magnetic properties of Co2YZ(Y = Cr, Z = Al, Ga) type Heusler compounds: a first principle study. Int J Mod Phys B 26(08):1250071–1250082

    Article  Google Scholar 

  23. Dubowik J, Gościańska I, Kudryavtsev YV, Oksenenko VA (2007) Structure and magnetism of Co2CrAl Heusler alloy films. Mater Sci Pol 25(4):1281–1287

    Google Scholar 

  24. Ishida S, Kawakami S, Asano S (2004) Theoretical predict of half-metals in Co–Cr–Fe–Al alloys. Mater Trans 45(4):1065–1069

    Article  Google Scholar 

  25. Zhang M, Liu Z, Hu H, Liu G, Cui Y, Chen J, Wu G, Zhang X, Xiao G (2004) Is Heusler compound Co2CrAl a half-metallic ferromagnet: electronic band structure, and transport properties. J Magn Magn Mater 277:130–135

    Article  Google Scholar 

  26. Ko V, Han G, Qiu J, Feng YP (2009) The band structure-matched and highly spin-polarized CoCrZ/CuCrAl Heusler alloys interface. Appl Phys Lett 95(20):202502–202503

    Article  Google Scholar 

  27. Buschow KHJ, Engen PG (1981) Magnetic and magneto-optical properties of Heusler alloys based on aluminium and gallium. J Magn Magn Mater 25(1):90–96

    Article  Google Scholar 

  28. Cai Y, Bai Z, Yang M, Feng YP (2012) Effect of interfacial strain on spin injection and spin polarization of Co2CrAl/NaNbO3/Co2CrAl magnetic tunneling junction. EPL 99(37001):1–5

    Google Scholar 

  29. Hoshino T, Fujima N, Asato M, Tatsuoka H (2010) Ab-initio calculations for defect energies in Co2MnSi and Co2CrAl. J Alloy Compd 504S:S531–S533

    Article  Google Scholar 

  30. Kandpal HC, Fecher GH, Felser C (2007) Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds. J Phys D Appl Phys 40:1507–1523

    Article  Google Scholar 

  31. Block T, Carey MJ, Gurney BA, Jepsen O (2004) Band-structure calculations of the half-metallic ferromagnetism and structural stability of full- and half-Heusler phases. Phys Rev B 70:205114-1–205114-5

    Article  Google Scholar 

  32. Kudryavtsev YV, Lee YP, Yoo YJ, Seo MS, Kim JM, Hwang JS, Dubowik J, Kim KW, Choi EH, Prokhnenko O (2012) Transport properties of Co2CrAl Heusler alloy films. Eur Phys J B 85:19–25

    Article  Google Scholar 

  33. Galanakis I, Dederichs PH, Papanikolaou N (2002) Slater–Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys Rev B 66(17):1744291–1744299

    Article  Google Scholar 

  34. Galanakis I (2005) Orbital magnetism in the half-metallic Heusler alloys. Phys Rev B 71:012413

    Article  Google Scholar 

  35. Wittmann R, Spindler S, Fischer B, Wagner H, Gerthsen D, Lange J, Brede M, Klöwer J, Schunk P, Schimmel T (1999) Transmission electron microscopic investigation of the microstructure of Fe–Cr–Al alloy. J Mater Sci 34:1791–1798

    Article  Google Scholar 

  36. Rai DP, Shankar A, Sandeep, Singh LR, Jamal M, Hashemifar SJ, Ghimire MP, Thapa RK (2012) Calculation of coulomb repulsion (U) for 3d transition elements in Co2YAl type Heusler alloys. Armen J Phys 5(3):105–110

    Google Scholar 

  37. Gilleßen M, Dronskowski R (2009) A combinatorial study of full Heusler alloys by first-principles computational methods. J Comput Chem 30(8):1290–1299

    Article  Google Scholar 

  38. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, de Gironcoli S, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO : a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Article  Google Scholar 

  39. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  40. Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616–3621

    Article  Google Scholar 

  41. Baroni S, Giannozzi P, Testa A (1987) Green’s-function approach to linear response in solids. Phys Rev Lett 58(18):1861–1864

    Article  Google Scholar 

  42. Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562

    Article  Google Scholar 

  43. Isaev E (2009) qha: calculation of thermodynamic properties using the Quasi-Harmonic approximation http://qha.qe-forge.org. Accessed 22 Jul 2013

  44. Srivastava GP (1990) The physics of phonons. Adam Hilger, Bristol

    Google Scholar 

  45. Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci USA 30(9):244–247

    Article  Google Scholar 

  46. Wurmehl S, Fecher GH, Kroth K, Kronast F, Dürr HA, Takeda Y, Saitoh Y, Kobayashi K, Lin HJ, Schönhense G, Felser C (2006) Electronic structure and spectroscopy of the quaternary Heusler alloy Co2Cr1−xFexAl. J Phys D Appl Phys 39:803–815

    Article  Google Scholar 

  47. Kudryavtsev YV, Uvarov VN, Oksenenko VA, Lee YP, Kim JB, Hyun YH, Kim KW, Rhee JY, Dubowik J (2008) Effect of disorder on various physical properties of Co2CrAl Heusler alloy films: experiment and theory. Phys Rev B 77:195104-1–195104-9

    Article  Google Scholar 

  48. Bayhan U, Arıkan N, Uğur Ş, Uğur G, Çivi M (2010) Structural, electronic and phonon properties of MoTa and MoNb: a density functional investigation. Physica Scripta 82:015601

    Article  Google Scholar 

  49. Born M, Huang K (1954) Dynamical theory of crystal lattices. Clarendon, Oxford

    Google Scholar 

  50. M. Gilleßen (2009) Maßgeschneidertes und Analytik-Ersatz: über die quantenchemischen Untersuchungen einiger ternärer intermetallischer Verbindungen. Ph. D. Dissertation, RWTH Aachen University

  51. Zayak AT, Entel P, Rabe KM, Adeagbo WA, Acet M (2005) Anomalous vibrational effects in nonmagnetic and magnetic Heusler alloys. Phys Rev B 72:054113-1–054113-8

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Gazi University Research Project Unit under Project No 05/2012-07, 05/2012-08, 05/2012-62, 05/2012-63 and the Ahi Evran University Research Project Unit under Project No. PYO.EGF.4001.13.002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Arıkan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arıkan, N., İyigör, A., Candan, A. et al. Electronic and phonon properties of the full-Heusler alloys X2YAl (X = Co, Fe and Y = Cr, Sc): a density functional theory study. J Mater Sci 49, 4180–4190 (2014). https://doi.org/10.1007/s10853-014-8113-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8113-7

Keywords

Navigation