Skip to main content
Log in

The role of the substrate surface morphology in enhancing the MgB2 superconducting temperature

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We hereby report on the role of the surface morphology of various substrates in the enhancement of the superconducting critical temperature of MgB2. MgB2 thin layers were grown by hybrid physical–chemical vapour deposition on silicon carbide SiC substrates/fibers and several other substrates, characterized by diverse surface morphologies. By investigating the structural, morphological and transport properties of MgB2 thin layers, the presented data show that the superconducting critical temperature T c exceeds the bulk value only when the MgB2 films are grown on atomically flat (0001) SiC single crystals and on MgB2 bottom layers. These results further confirm the interpretation of the coalescence-driven tensile strain mechanism behind the enhancement of superconducting properties in MgB2 thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brock DK, Track EK, Rowell JM (2000) Superconductor ICs: the 100-GHz second generation. IEEE Spectr 37:40–46

    Google Scholar 

  2. Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J (2001) Superconductivity at 39 K in magnesium diboride. Nature 410:63–64

    Article  Google Scholar 

  3. Rowell J (2002) Magnesium diboride superior thin films. Nat Mater 1:5–6

    Article  Google Scholar 

  4. Xi XX (2009) MgB2 thin films. Supercond Sci Technol 22:043001

    Article  Google Scholar 

  5. Iavarone M, Karapetrov G, Koshelev AE, Kwok WK, Crabtree GW, Hinks DG, Kang WN, Choi EM, Kim HJ, Lee SI (2002) Two-band superconductivity in MgB2. Phys Rev Lett 89:187002

    Article  Google Scholar 

  6. Iavarone M, Karapetrov G, Menzel A, Komanicky V, You H, Kwok WK, Orgiani P, Ferrando V, Xi XX (2005) Characterization of off-axis MgB2 epitaxial thin films for planar junctions. Appl Phys Lett 87:242506

    Article  Google Scholar 

  7. Di Capua R, Aebersold HU, Ferdeghini C, Ferrando V, Orgiani P, Putti M, Salluzzo M, Vaglio R, Xi XX (2007) Role of interband scattering in neutron irradiated MgB2 thin films by scanning tunneling spectroscopy measurements. Phys Rev B 75:014515

    Article  Google Scholar 

  8. Cubitt R, Dewhurst CD, Eskildsen MR, Levett SJ, Matadeen A, Jun J, Kazakov SM, Karpinski J, Bud’ko SL, Anderson NE, Canfield PC (2006) Penetration depth anisotropy in MgB2 single crystals and powders. J Phys Chem Solids 7:493

    Article  Google Scholar 

  9. Eltsev Yu, Nakao K, Lee S, Masui T, Chikumoto N, Tajima S, Koshizuka N , Murakami M (2002) Anisotropic resistivity and hall effect in MgB2 single crystals. Phys Rev B 66:180504R

    Article  Google Scholar 

  10. Putti M, Vaglio R, Rowell JM (2008) Radiation effects on MgB2: a review and a comparison with A15 superconductors. Supercond Sci Technol 21:043001

    Article  Google Scholar 

  11. Chen K, Dai W, Zhuang CG, Li Qi, Carabello S, Lambert JG, Mlack JT, Ramos RC, Xi XX (2012) Momentum-dependent multiple gaps in magnesium diboride probed by electron tunnelling spectroscopy. Nat Commun 3:619

    Article  Google Scholar 

  12. Zeng XH, Pogrebnyakov AV, Kotcharov A, Jones JE, Xi XX, Lysczek EM, Redwing JM, Xu SY, Li Qi, Lettieri J, Schlom DG, Tian W, Pan XQ, Liu ZK (2002) In situ epitaxial MgB2 thin films for superconducting electronics. Nat Mater 1:35–38

    Article  Google Scholar 

  13. Zeng XH, Pogrebnyakov AV, Zhu MH, Jones JE, Xi XX, Xu SY, Wertz E, Li Qi, Redwing JM, Lettieri J, Vaithyanathan V, Schlom DG, Liu ZK, Trithaveesak O, Schubert J (2003) Superconducting MgB2 thin films on silicon carbide substrates by hybrid physical–chemical vapor deposition. Appl Phys Lett 82:2097

    Article  Google Scholar 

  14. Pogrebnyakov AV, Redwing JM, Jones JE, Xi XX, Xu SY, Li Qi, Vaithyanathan V, Schlom DG (2003) Thickness dependence of the properties of epitaxial MgB2 thin films grown by hybrid physical–chemical vapor deposition. Appl Phys Lett 82:4319

    Article  Google Scholar 

  15. Pogrebnyakov AV, Redwing JM, Raghavan S, Vaithyanathan V, Schlom DG, Xu SY, Li Qi, Tenne DA, Soukiassian A, Xi XX, Johannes MD, Kasinathan D, Pickett WE, Wu JS, Spence JCH (2004) Enhancement of the superconducting transition temperature of MgB2 by a strain-induced bond-stretching mode softening. Phys Rev Lett 93:147006

    Article  Google Scholar 

  16. Cui Y, Jones JE, Beckley A, Donovan R, Lishego D, Maertz E, Pogrebnyakov AV, Orgiani P, Redwing JM, Xi XX (2005) Degradation of MgB2 thin films in water. IEEE Trans Appl Phys 15:224–227

    Article  Google Scholar 

  17. Van der Pauw LJ (1958) A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res Rep 13:1–9

    Google Scholar 

  18. Zhuang C, Tan T, Wang Y, Bai S, Ma X, Yang H, Zhang G, He Y, Wen H, Xi XX, Feng Q, Gan Z (2009) Clean MgB2 thin films on different types of single-crystal substrate fabricated by hybrid physical–chemical vapor deposition. Supercond Sci Technol 22:025002

    Article  Google Scholar 

  19. Fen L, Guo T, Zhang K, Chen L, Chen C, Feng Q (2006) Thick polycrystalline MgB2 film on Cu substrate by hybrid physical–chemical vapour deposition. Supercond Sci Technol 19:1196

    Article  Google Scholar 

  20. Chromik Š, Huran J, Štrbík V, Španková M, Vávra I, Bohne W, Röhrich J, Strub E, Kováč P, Stanček S (2006) Nanogranular MgB2 thin films on SiC buffered Si substrates prepared by an in situ method. Supercond Sci Technol 19:577

    Article  Google Scholar 

  21. Regel LL, Wilcox WR (2001) Diamond film deposition by chemical vapor transport. Acta Astronaut 48:129–144

    Article  Google Scholar 

  22. Vaglio R, Attanasio C, Maritato L, Ruosi A (1993) Explanation of the resistance-peak anomaly in nonhomogeneous superconductors. Phys Rev B 47:15302–15303

    Article  Google Scholar 

  23. Bulaevskii LN, Clem JR, Glazman LI, Malozemoff AP (1992) Model for the low-temperature transport of bi-based high-temperature superconducting tapes. Phys Rev B 45:2545–2548

    Article  Google Scholar 

  24. Rowell JM (2003) The widely variable resistivity of MgB2 samples. Supercond Sci Technol 16:R17

    Article  Google Scholar 

  25. Rowell JM, Xu SY, Zeng XH, Pogrebnyakov AV, Li Qi, Xi XX, Redwing JM, Tian W, Pan X (2003) Critical current density and resistivity of MgB2 films. Appl Phys Lett 83:102–104

    Article  Google Scholar 

  26. Ferrando V, Orgiani P, Pogrebnyakov AV, Chen J, Li Q, Redwing JM, Xi XX, Giencke JE, Eom CB, Feng QR, Betts JB, Mielke CH (2005) High upper critical field and irreversibility field in MgB2 coated-conductor fibers. Appl Phys Lett 87:252509

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by ONR under Grant No. N00014-00-1-0294. P.O’s research activity has received funding from the European Community Seventh Framework Programme 2007–2011 under Collaborative Project ‘Integrated Ground and on-Board system for Support of the Aircraft Safe Take-off and Landing-GABRIEL’ Grant agreement No. 284884 and under Grant agreement No. 283141 IRONSEA. R.C’s research activity has received funding from the European Community Seventh Framework Programme 2007–2011 under Grant agreement No. 212348 NFFA and Progetto strategico NFFA (fondi MIUR 2012–2013). The authors wish to acknowledge V. Ferrando and R. Vaglio for stimulating scientific discussion and fruitful collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Orgiani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orgiani, P., Ciancio, R., Wolak, M.A. et al. The role of the substrate surface morphology in enhancing the MgB2 superconducting temperature. J Mater Sci 49, 4108–4114 (2014). https://doi.org/10.1007/s10853-014-8104-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8104-8

Keywords

Navigation