Skip to main content
Log in

Martensite transformation in bulk and polycrystalline austenite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Martensite is a heterogeneous, nucleation-controlled, and autocatalytic transformation with strong industrial relevance due to its ability to impart the properties of engineering steels during production, manufacturing, and use. In this work, a formal model of the spread of martensite nucleation permitted obtaining the cumulative number density of embryos in a bulk, polycrystalline Fe-31 wt%Ni-0.02 wt%C alloy based on standard metallography measurements. The result shows that the density of embryos available to initiate the reaction in a bulk; polycrystalline Fe-31 wt%Ni-0.02 wt%C alloy is significantly smaller than the density of pre-existent martensite embryos available in a similar alloy constituted of isolated small particles or the particulate. In a polycrystal, the present authors have previously proposed that embryos that do initiate the transformation originate from a volume of influence of the grain boundaries. Therefore, in addition to the usual concept of embryo potency, a new concept, namely, embryo association must be introduced. In a polycrystal, fewer but better localized, i.e. embryos associated with the grain boundaries, which are located within the volume of influence of the grain boundaries, initiate martensite transformation larger number of embryos which may exist within the grains. According to this view, this difference in the embryo association in the polycrystal and in the particulate is the main factor contributing to the difference in the martensite density of embryos available to propagate the transformation observed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hecker SS, Stout MG, Staudhammer KP, Smith LJ (1982) Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: part I Magnetic measurements and mechanical behavior. Metall Trans A 13A:619–626

    Article  Google Scholar 

  2. Stringfellow RG, Parks DM, Olsen GB (1992) A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels. Acta Metall 40:1703–1716

    Article  Google Scholar 

  3. Iwamoto T, Tsuta T, Tomita Y (1998) Investigation on deformation mode dependence of strain-induced martensitic transformation in TRIP steels and modelling of transformation kinetics. Int J Mech Sci 40:173–182

    Article  Google Scholar 

  4. Perdahcioglu ES, Geijselaers HJM, Huetink J (2008) Influence of stress state and strain path on deformation induced martensitic transformations. Mats Sci Eng A 481–482:727–731

    Article  Google Scholar 

  5. Beese AM, Mohr D (2011) Effect of stress triaxiality and lode angle on the kinetics of strain-induced austenite-to-martensite transformation. Acta Mater 59:2589–2600

    Article  Google Scholar 

  6. Pati SR, Cohen M (1969) Nucleation of the isothermal martensitic transformation. Acta Metall 17:189–199

    Article  Google Scholar 

  7. Pati SR, Cohen M (1971) Kinetics of isothermal martensitic transformations in an iron-nickel-manganese alloy. Acta Metall 19:1327–1332

    Article  Google Scholar 

  8. Shih CH, Averbach BL, Cohen M (1955) Some characteristics of the isothermal martensitic transformation. Trans Metall AIME 203:183–187

    Google Scholar 

  9. Raghavan V, Entwisle AR (1965) Physical properties of martensite and bainite. Iron and Steel Institute, London, pp 30–37

    Google Scholar 

  10. Ghosh G, Raghavan V (1986) The dimensions of isothermally formed martensitic plates in an Fe-23.2 wt%Ni-2.8 wt%Mn alloy. Mats Sci Eng A 80:65–74

    Article  Google Scholar 

  11. Cech RE, Turnbull D (1956) Heterogeneous nucleation of the martensite transformation. Trans Metall AIME 206:124–132

    Google Scholar 

  12. Cohen M, Olson GB (1976) Martensitic nucleation and the role of the nucleation defect. Suppl Trans JIM 17:93–98

    Google Scholar 

  13. Magee CL (1970) In: Aaronson HI (ed) Phase Transformations. Metals Park, ASM, pp 115–156

    Google Scholar 

  14. Raghavan V (1969) Formation sequence of plates in isothermal martensite transformation. Acta Metall 17:1299–1303

    Article  Google Scholar 

  15. Guimarães JRC, Gomes JC (1978) Metallographic study of influence of austenite grain-size on martensite kinetics in Fe-31.9 Ni-0.02C. Acta Metall 26:1591–1596

    Article  Google Scholar 

  16. Guimarães JRC, Rios PR (2010) Martensite start temperature and the austenite grain-size. J Mats Sci 45:1074–1077

    Article  Google Scholar 

  17. DeHoff RT (1986) In: Leffers T, Ralph B, Hansen N, Juul Jensen D (eds) Annealing processes recovery recrystallization and grain growth. RISØ National Laboratory, Roskilde, pp 35–52

    Google Scholar 

  18. Vandermeer RA (2005) Microstructural descriptors and the effects of nuclei clustering on recrystallization path kinetics. Acta Mater 53:1449–1457

    Article  Google Scholar 

  19. Rios PR, Guimarães JRC (2007) Microstructural path analysis of athermal martensite. Scr Mater 57:1105–1108

    Article  Google Scholar 

  20. Rios PR, Guimarães JRC (2008) Formal analysis of isothermal martensite spread. Mater Res 11:103–108

    Article  Google Scholar 

  21. Rios PR, Guimarães JRC (2010) Microstructural path analysis of martensite burst. Mater Res 13:119–124

    Article  Google Scholar 

  22. Rios PR, Villa E (2009) Transformation kinetics for inhomogeneous nucleation. Acta Mater 57:1199–1208

    Article  Google Scholar 

  23. Underwood EE (1984) In: McCall JL, Steele JH (eds) Practical applications of quantitative metallography, ASTM special technical publication 839. ASTM, Philadelphia, pp 160–179

    Chapter  Google Scholar 

  24. Guimarães JRC, Rios PR (2008) Initial nucleation kinetics of martensite transformation. J Mats Sci 43:5206–5210

    Article  Google Scholar 

  25. Guimarães JRC, Rios PR (2013) Modeling lath martensite transformation curve. Metall Mats Trans A 44A:2–4

    Article  Google Scholar 

  26. Guimarães JRC (1987) Initial nucleation sites, autocatalysis, and the spread of martensite bursts in Fe-31.9 wt%Ni-0.02 wt%C. Mats Sci Eng 95:217–224

    Article  Google Scholar 

  27. Ghosh G (1988) Spread of transformation and plate dimensions of isothermally formed martensite. Mats Sci Eng A 101:213–220

    Article  Google Scholar 

  28. Guimarães JRC, Rios PR (2013) Microstructural analysis of the martensite volume fraction. Metall Mats Trans A 44A:147–151

    Article  Google Scholar 

  29. Guimarães JRC, Saavedra A (1984) A computer-assisted analysis of the spread of the martensite transformation. Mats Sci Eng 62:11–15

    Article  Google Scholar 

  30. Guimarães JRC and Brandão LPM (1980) Determination of number and size-distribution of martensitic plates in Fe-31.9 %Ni-0.02 %C. Scr Metall 14:305–310

    Article  Google Scholar 

  31. Olson G, Tsukaki K, Cohen M (1985) Statistical aspects of martensitic nucleation. Mat Res Symp Proc 57:129–148

    Article  Google Scholar 

  32. Zang Y, Jin M, Khachaturyan AG (2007) Phase field microelasticity modeling of heterogeneous nucleation and growth in martensitic alloys. Acta Mater 55:565–574

    Article  Google Scholar 

  33. Tsukaki K, Maki T (1981) The effect of cooling rate on the morphology of lath martensite in Fe-Ni alloys. J Jpn Inst Met 45:126–134

    Google Scholar 

  34. Kajiwara S (1986) Roles of dislocations and grain-boundaries in martensite nucleation. Metall Trans A 17A:1693–1702

    Article  Google Scholar 

  35. Ueda M, Yasuda HY, Umakoshi Y (2001) Effect of grain boundary character on the martensitic transformation in Fe–32 at.%Ni bicrystals. Acta Mater 49:3421–3432

    Article  Google Scholar 

Download references

Acknowledgements

P. R. Rios is grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, and to the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, FAPERJ, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Rios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guimarães, J.R.C., Rios, P.R. Martensite transformation in bulk and polycrystalline austenite. J Mater Sci 49, 3816–3822 (2014). https://doi.org/10.1007/s10853-014-8093-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8093-7

Keywords

Navigation