Skip to main content
Log in

Highly enhanced mechanical properties in Cu matrix composites reinforced with graphene decorated metallic nanoparticles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study investigated the preparation and mechanical performance of graphene/metal composites using Ni nanoparticles decorated graphene nanoplatelets (Ni-GPLs) as a reinforcing component in Cu matrix (Ni-GPL/Cu). Ni-GPLs consisting of well-dispersed Ni nanoparticles strongly attached on GPLs were successfully synthesized by chemically reducing Ni ions on the surface of GPLs. The Ni-GPL/Cu composites with only 0.8 vol% Ni-GPLs exhibited a significant improvement in ultimate tensile strength (UTS), being 42 % higher than that of monolithic Cu. The significant strength enhancement is attributed to the unique structure of Ni-GPLs, which was expected to generate a good dispersion and strong GPL–Cu interfacial bonding. The UTS of 0.8 vol% GPL/Cu composites was even lower than that of the monolithic Cu due to the GPL aggregates. The obtained results indicated that Ni-GPLs are novel and effective reinforcing components for greatly improving the mechanical properties of the graphene/metal composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tjong SC, Ma Z (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R 29:49–113

    Article  Google Scholar 

  2. Bakshi S, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites—a review. Int Mater Rev 55:41–64

    Article  Google Scholar 

  3. Chen X, Xia J, Peng J, Li W, Xie S (2000) Carbon-nanotube metal–matrix composites prepared by electroless plating. Compos Sci Technol 60:301–306

    Article  Google Scholar 

  4. Kwon H, Estili M, Takagi K, Miyazaki T, Kawasaki A (2009) Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47:570–577

    Article  Google Scholar 

  5. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274

    Article  Google Scholar 

  6. Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3:301–306

    Article  Google Scholar 

  7. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581

    Article  Google Scholar 

  8. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  Google Scholar 

  9. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA et al (2006) Graphene-based composite materials. Nature 442:282–286

    Article  Google Scholar 

  10. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530

    Article  Google Scholar 

  11. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375

    Article  Google Scholar 

  12. Goyal V, Balandin AA (2012) Thermal properties of the hybrid graphene–metal nano–micro-composites: applications in thermal interface materials. Appl Phys Lett 100:073113

    Article  Google Scholar 

  13. Shahil KM, Balandin AA (2012) Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun 152:1331–1340

    Article  Google Scholar 

  14. Goli P, Legedza S, Dhar A, Salgado R, Renteria J, Balandin AA (2013) Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. J Power Sources 248:37–43

    Article  Google Scholar 

  15. Shahil KM, Balandin AA (2012) Graphene—multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12:861–867

    Article  Google Scholar 

  16. Bartolucci SF, Paras J, Rafiee MA, Rafiee J, Lee S, Kapoor D et al (2011) Graphene–aluminum nanocomposites. Mater Sci Eng A 528:7933–7937

    Article  Google Scholar 

  17. Chen LY, Konishi H, Fehrenbacher A, Ma C, Xu JQ, Choi H et al (2012) Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scripta Mater 67:29–32

    Article  Google Scholar 

  18. Hwang J, Yoon T, Jin SH, Lee J, Kim TS, Hong SH et al (2013) Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv Mater 25:6724–6729

    Article  Google Scholar 

  19. Kim Y, Lee J, Yeom MS, Shin JW, Kim H, Cui Y et al (2013) Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites. Nat Commun 4:1–7

    Google Scholar 

  20. Wang J, Li Z, Fan G, Pan H, Chen Z, Zhang D (2012) Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Mater 66:594–597

    Article  Google Scholar 

  21. Subrahmanyam K, Manna AK, Pati SK, Rao C (2010) A study of graphene decorated with metal nanoparticles. Chem Phys Lett 497:70–75

    Article  Google Scholar 

  22. Muszynski R, Seger B, Kamat PV (2008) Decorating graphene sheets with gold nanoparticles. J Phys Chem C 112:5263–5266

    Article  Google Scholar 

  23. Xu C, Wang X, Zhu J (2008) Graphene–metal particle nanocomposites. J Phys Chem C 112:19841–19845

    Article  Google Scholar 

  24. Pasricha R, Gupta S, Srivastava AK (2009) A facile and novel synthesis of Ag–graphene-based nanocomposites. Small 5:2253–2259

    Article  Google Scholar 

  25. May P, Khan U, Coleman JN (2013) Reinforcement of metal with liquid-exfoliated inorganic nano-platelets. Appl Phys Lett 103:163106

    Article  Google Scholar 

  26. Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  Google Scholar 

  27. Wang Y, Zhao Y, Bao T, Li X, Su Y, Duan Y (2012) Preparation of Ni-reduced graphene oxide nanocomposites by Pd-activated electroless deposition and their magnetic properties. Appl Surf Sci 258:8603–8608

    Article  Google Scholar 

  28. Ji Z, Shen X, Zhu G, Zhou H, Yuan A (2012) Reduced graphene oxide/nickel nanocomposites: facile synthesis, magnetic and catalytic properties. J Mater Chem 22:3471–3477

    Article  Google Scholar 

  29. Munir Z, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41:763–777. doi:10.1007/s10853-006-6555-2

    Article  Google Scholar 

  30. Zeng Q, Cheng J, Tang L, Liu X, Liu Y, Li J et al (2010) Self-assembled graphene-enzyme hierarchical nanostructures for electrochemical biosensing. Adv Funct Mater 20:3366–3372

    Article  Google Scholar 

  31. Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3:2653–2659

    Article  Google Scholar 

  32. Wang G, Yang J, Park J, Gou X, Wang B, Liu H et al (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195

    Article  Google Scholar 

  33. Park J, Kang E, Son SU, Park HM, Lee MK, Kim J et al (2005) Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv Mater 17:429–434

    Article  Google Scholar 

  34. Wang C, Zhang Q, Wu QH, Ng TW, Wong T, Ren J et al (2012) Facile synthesis of laminate-structured graphene sheet–Fe3O4 nanocomposites with superior high reversible specific capacity and cyclic stability for lithium-ion batteries. RSC Adv 2:10680–10688

    Article  Google Scholar 

  35. Murugan AV, Muraliganth T, Manthiram A (2009) Rapid, facile microwave–solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem Mater 21:5004–5006

    Article  Google Scholar 

  36. Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2:581–587

    Article  Google Scholar 

  37. Nicholas M, Valentine T, Waite M (1980) The wetting of alumina by copper alloyed with titanium and other elements. J Mater Sci 15:2197–2206. doi:10.1007/BF00552307

    Article  Google Scholar 

  38. Ang L, Hor TA, Xu G, Tung C, Zhao S, Wang J (2000) Decoration of activated carbon nanotubes with copper and nickel. Carbon 38:363–372

    Article  Google Scholar 

  39. Cha SI, Kim KT, Arshad SN, Mo CB, Hong SH (2005) Extraordinary strengthening effect of carbon nanotubes in metal–matrix nanocomposites processed by molecular-level mixing. Adv Mater 17:1377–1381

    Article  Google Scholar 

  40. Kim JK, Mai YW (1991) High strength, high fracture toughness fibre composites with interface control—a review. Compos Sci Technol 41:333–378

    Article  Google Scholar 

  41. Jiang L, Li Z, Fan G, Cao L, Zhang D (2012) Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes. Scripta Mater 66:331–334

    Article  Google Scholar 

  42. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Science and Technology Research Foundation of Hebei Education Department for Young Teachers in University (No. QN20131168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meixia Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Che, H., Liu, X. et al. Highly enhanced mechanical properties in Cu matrix composites reinforced with graphene decorated metallic nanoparticles. J Mater Sci 49, 3725–3731 (2014). https://doi.org/10.1007/s10853-014-8082-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8082-x

Keywords

Navigation