Skip to main content
Log in

Improved mechanical properties of Ni-rGO/Cu composites prepared by molecular-level mixing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The poor interface bonding between graphene and copper matrix significantly impair  the strengthening effect of graphene, but it can be improved by graphene modification. In this work, the Ni-rGO compound powders were synthesized via hydrothermal method, and the Cu matrix bulk composites reinforced by Ni-rGO and rGO were prepared by the molecular-level mixing method along with spark plasma sintering, respectively. The sintered bulk materials were examined by transmission electron microscope, scanning electron microscope, Raman spectroscope and X-ray diffractometer, and the mechanical and electrical properties were tested as well. The results indicated that the incorporation of Ni-rGO exhibits a more obvious strengthening effect. As compared to the 0.1wt.%rGO/Cu composite material, the yield strength, tensile strength and elongation of the 0.1wt.%Ni-rGO/Cu composite material are increased by 10.9, 13.5 and 23.9%, respectively. This can be ascribed to the modified structure of graphene along with the improved interface bonding by the incorporation of Ni nanoparticles in rGO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.H. Wang, J.M. Liu, S.P. Y, X.L. Wang, Y.B. Zhang, Y. Fu, T.J. Li, T.M. Wang, J. Mater. Res. Technol. 13, 2433 (2021) https://doi.org/10.1016/j.jmrt.2021.06.009

  2. W. Zhang, S.Q. Zhou, W.J. Ren, Y.J. Yang, L. Shi, Q.H. Zhou, M.B. Liu, J. Alloy Compd. 888, 161527 (2021) https://doi.org/10.1016/j.jallcom.2021.161527

  3. X.Y. Zhang, Y. Liu, X.B. Liu, J.F. Zhang, X.Chen, Y.X. Wu, L. Jing, X.L. Wu, M. Zhao, P.D. Han, Mater. Sci. Eng. A. 828, 142118 (2021) https://doi.org/10.1016/j.msea.2021.142118

  4. Y.N. Zan, Q. Zhang, Y.T. Zhou, Z.Y. Liu, Q.Z. Wang, D. Wang, B.L. Xiao, W.C. Ren, Z.Y. Ma, Compos. Part B. 195, 108095 (2020) https://doi.org/10.1016/j.compositesb.2020.108095

  5. L.L. Meng, X.S. Hu, X.J.Wang, C.L. Zhang, H.L. Shi, Y.Y. Xiang, N.J. Liu, K.Wu, Mater. Sci. Eng. A. 733, 414 (2018) https://doi.org/10.1016/j.msea.2018.07.056

  6. Z.W. Yang, J.H. Yang, Y.J. Han, Y. Wang, D.P. Wang, Vacuum 181, 109604 (2020) https://doi.org/10.1016/j.vacuum.2020.109604

  7. K. Jagannadham, J. Appl. Phys. 110, 074901 (2011). https://doi.org/10.1063/1.3641640

    Article  ADS  Google Scholar 

  8. M.T. Alshamkhani, L.K. Teong, L.K. Putri, A.R. Mohamed, P. Lahijani, M. Mohammadi, J. Environ. Chem. Eng. 9, 106506 (2021) https://doi.org/10.1016/j.jece.2021.106506

  9. Z.T. Chen, X.L. Guo, L. Zhu, L. Li, Y.Y. Liu, L. Zhao, W.J. Zhang, J. Chen, Y. Zhang, Y.H. Zhao, J. Mater. Sci. Technol. 34, 1919 (2018) https://doi.org/10.1016/j.jmst.2018.02.005

  10. S. Yi, J.J. Li, J.H. Zhu, X.Z. Wang, J. Mo, S.L. Ding, J. Manuf. Process. 49, 35 (2020) https://doi.org/10.1016/j.jmapro.2019.09.038

  11. C.C. Wang, Z.P. Li, H. Zhao, G.Q. Zhang, T.H. Ren, Y.D. Zhang, Tribol. Int. 152, 106475 (202) https://doi.org/10.1016/j.triboint.2020.106475

  12. M.S. Yahya, E.V. Lau, Chem. Eng. Sci. 247, 117033 (2022) https://doi.org/10.1016/j.ces.2021.117033

  13. L.C. Ma, G.J. Song, X.C. Zhang, S.F.F Zhou, Y.P. Liu, L.Y. Zhang, Eur. Polym. J. 157, 110677 (2021) https://doi.org/10.1016/j.eurpolymj.2021.110677

  14. B.X. Xue, J. Yao, S.Y. Zhou, J.F. Zheng, S.H. Li, S.B. Zhang, H.D. Qian, J. Membrane Sci. 605, 118102 (2020) https://doi.org/10.1016/j.memsci.2020.118102

  15. A. Nieto, A. Bisht, D. Lahiri, C. Zhang, A. Agarwal, Int. Mater. Rev. 62, 241 (2017) https://doi.org/10.1080/09506608.2016.1219481

  16. Ö. Güler, N. Bağcı, J. Mater. Res. Technol. 9, 6808 (2020) https://doi.org/10.1016/j.jmrt.2020.01.077

  17. S. Dastjerdi, B. Akgöz, L. Yazdanparast, Compos. B 150, 124 (2018) https://doi.org/10.1016/j.compositesb.2018.05.059

    Article  Google Scholar 

  18. C. Ayyappadas, A. Muthuchamy, A.R. Annamalai, D.K. Agrawal, Adv. Powder Technol. 28, 1760 (2017) https://doi.org/10.1016/j.apt.2017.04.013

  19. Z. Cao, X.D. Wang, J.L. Li, Y. Wu, H.P. Zhang, J.Q. Guo, S.Q.Wang, J. Alloy Compd. 696, 498 (2017) https://doi.org/10.1016/j.jallcom.2016.11.302

  20. H.Y. Yue, L.H. Yao, X. Gao, S.L. Zhang, E.J. Guo, H. Zhang, X.Y. Lin, B. Wang, J. Alloy Compd. 691, 755 (2017) https://doi.org/10.1016/j.jallcom.2016.08.303

  21. W. Ye, Q.Q. Chi, H. Zhou, P. Gao, Int. J. Hydrogen Energy 43, 19164 (2018). https://doi.org/10.1016/j.ijhydene.2018.08.166

    Article  Google Scholar 

  22. G.S. Shao, P. Liu, K. Zhang, W. Li, X.H. Chen, F.C. Ma, Mater. Sci. Eng. A. 739, 329 (2019) https://doi.org/10.1016/j.msea.2018.10.067

  23. F. Nazeer, Z. Ma, L.H. Gao, M.A. Khan, A. Malik, F.C. Wang, H.Z. Li, Results Phys. 14, 102432 (2019) https://doi.org/10.1016/j.rinp.2019.102432

  24. X.J. Li, J. Natsuki, T. Natsuki, Mater. Charact. 172, 110887 (2021) https://doi.org/10.1016/j.matchar.2021.110887

    Article  Google Scholar 

  25. K. Zhang, G.S. Shao, X.H. Chen, W. Li, F.C. Ma, P. Liu, Mater. Lett. 252, 338 (2019) https://doi.org/10.1016/j.matlet.2019.06.018

  26. L.D. Wang, Y. Cui, R.Y. Li, G.J. Cao, B. Li, W.D. Fei, Acta Metall. Sin. (Engl. Lett.) 25, 924 (2014) https://doi.org/10.1007/s40195-014-0146-z

  27. J. Hwang, T. Yoon, S.H. Jin, J. Lee, T. Kim, S.H. Hong, S. Jeon, Adv. Mater. 25, 6724 (2013) https://doi.org/10.1002/adma.201302495

  28. L.D. Wang, Y. Cui, B. Li, S. Yang, R.Y. Li, Z. Liu, R. Vajtai, W.D. Fei, RSC Adv. 5, 51193 (2015) https://doi.org/10.1039/C5RA04782J

  29. S.C. Yoo, J. Lee, S. H. Hong, Compos. B 176, 107235 (2019) https://doi.org/10.1016/j.compositesb.2019.107235

    Article  Google Scholar 

  30. D.D. Zhang, Z.J. Zhan, J. Alloy Compd. 654, 226 (2016) https://doi.org/10.1016/j.jallcom.2015.09.013

    Article  Google Scholar 

  31. M. X. Li, H. W. Che, X. Y. Liu, S. X. Liang, H. L. Xie, J. Mater. Sci. 49, 3725 (2014) https://doi.org/10.1007/s10853-014-8082-X

  32. Y. X. Tang, X. M. Yang, R. R. Wang, M. X. Li, Mat. Sci. Eng. A. 599, 247 (2014) https://doi.org/10.1016/j.msea.2014.01.061

    Article  Google Scholar 

  33. R.R. Jiang, X.F. Zhou, Z.P. Liu, Mat. Sci. Eng. A., 323 (2017) https://doi.org/10.1016/j.msea.2016.10.029 679

    Article  Google Scholar 

  34. Y.J. Yang, M.B. Liu, S.Q. Zhou, W.J. Ren, Q.H. Zhou, L. Shi, J. Alloy Compd. 871, 159535 (2021) https://doi.org/10.1016/j.jallcom.2021.159535

    Article  Google Scholar 

  35. W.J. Ren, A. Li, W. Zhang, Y.J. Yang, S.Q. Zhou, L. Shi, Q.H. Zhou, M.B. Liu, X.H. Wang, JOM 72, 4514 (2020) https://doi.org/10.1007/s11837-020-04440-w

  36. K. Chu, F. Wang, X.H. Wang, D.J. Huang, Mater. Sci. Eng. A. 713, 269 (2018) https://doi.org/10.1016/j.msea.2017.12.080

    Article  Google Scholar 

  37. A.G. Ramu, A. Umar, A.A. Ibrahim, H. Algadi, Y.S.A. Ibrahim, Y. Wang, M.M. Hanafiah, P. Shanmugam, D. Choi, Environ. Res. 200, 111366 (2021) https://doi.org/10.1016/j.envres.2021.111366

  38. S. Thakur, N. Karak, Carbon 50, 5331 (2012) https://doi.org/10.1016/j.carbon.2012.07.023

    Article  Google Scholar 

  39. R. Sayyad, M. Ghambari, T. Ebadzadeh, A. H. Pakseresht, E. Ghasali, Ceram. Int. 46, 13569 (2020) https://doi.org/10.1016/j.ceramint.2020.02.142

    Article  Google Scholar 

  40. H.L. Shi, W.M. Gan, C. Esling, X.J. Wang, Y.D. Zhang, E. Maawad, A. Stark, X.H. Li, L.D. Wang, Acta Mater. 200, 338 (2020) https://doi.org/10.1016/j.actamat.2020.09.017

    Article  ADS  Google Scholar 

  41. D.D. Zhang, Z.J. Zhan, J. Alloy Compd. 658, 663 (2016) https://doi.org/10.1016/j.jallcom.2015.10.252

    Article  Google Scholar 

  42. F.Y. Chen, J.M. Ying, Y.F. Wang, S.Y. Du, Z.P. Liu, Q. Huang, Carbon 96, 836 (2016) https://doi.org/10.1016/j.carbon.2015.10.023

    Article  Google Scholar 

  43. X.F. Chen, J.M. Tao, J.H. Yi, Y.C. Liu, C.J. Li, R. Bao, Mater. Sci. Eng. A. 718, 427 (2018) https://doi.org/10.1016/j.msea.2018.02.006

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 51971173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianhui Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, X., Liu, J. et al. Improved mechanical properties of Ni-rGO/Cu composites prepared by molecular-level mixing. Appl. Phys. A 128, 165 (2022). https://doi.org/10.1007/s00339-022-05300-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05300-x

Keywords

Navigation