Skip to main content
Log in

A model for the prediction of liquid–liquid interfacial energies

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A model for the calculation of liquid–liquid interfacial energies is presented. It is based on the assumption that the interface can be treated as a separate thermodynamic phase. Its derivation has been performed in an analogous way as the derivation of the Butler equation for the surface tension of liquid alloys. It requires as input parameters the excess free energy and the compositions of the bulk phases as functions of temperature. In addition, it also requires the partial molar volumes of the components. Comparison with existing experimental data for Al–Pb, Al–In, and Cu–Co in a non-equilibrium state shows very good agreements. For Al–Bi, the experimental data are either over or underestimated by a factor of ≈1.7, depending on which of the two thermodynamic assessments is used. For the Al-based systems, the calculated Al-mole fraction in the interface layer is close to the arithmetic average of the Al-mole fractions of the bulk phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ratke L (1993) Immiscible liquid metals and organics. DGM Informationsgesellschaft mbH, Oberursel

    Google Scholar 

  2. Kaban I, Köhler M, Ratke L, Hoyer W, Mattern N, Eckert J, Greer AL (2011) Interfacial tension, wetting, and nucleation in Al–Bi and Al–Pb monotectic alloys. Acta Mater 59:6880–6889

    Article  Google Scholar 

  3. Kaban I, Curiotto S, Chatain D, Hoyer W (2010) Surfaces, interfaces and phase transitions in Al–In monotectic alloys. Acta Mater 58:3406–3414

    Article  Google Scholar 

  4. Kaban I, Gröbner J, Hoyer W, Schmid-Fetzer R (2010) Liquid–liquid phase equilibria, density difference, and Interfacial tension in the Al–Bi–Si monotectic system. J Mater Sci 45:2030–2034

    Article  Google Scholar 

  5. Egry I, Ratke L, Kolbe M, Chatain D, Curiotto S, Battezatti L, Johnson E, Pryds N (2010) Interfacial properties of immiscible Co–Cu alloys. J Mater Sci 45:1979–1985. doi:10.1007/s10853-009-3890-0

    Article  Google Scholar 

  6. Dörfler HD (2002) Grenzflächen und kolloid-disperse Systeme—Physik und Chemie. Springer, Berlin

    Book  Google Scholar 

  7. Antion C, Chatain D (2007) Liquid surface and liquid/liquid interface energies of binary subregular alloys and wetting transitions. Surf Sci 10:2232–2244

    Article  Google Scholar 

  8. Wynblatt P, Saul A, Chatain D (1998) The effects of prewetting and wetting transitions on the surface energy of liquid binary alloys. Acta Mater 46:2337–2347

    Article  Google Scholar 

  9. Brillo J, Chatain D, Egry I (2009) Surface tension of liquid binary alloys. Int J Mater Res 100:53–58

    Article  Google Scholar 

  10. Butler JAV (1932) The thermodynamics of the surfaces of solutions. Proc R Soc A135:348–374

    Article  Google Scholar 

  11. Egry I, Brillo J (2009) Surface tension and density of liquid metallic alloys measured by electromagnetic levitation. J Chem Eng Data 54:2347–2352

    Article  Google Scholar 

  12. Tanaka T, Iida T (1994) Application of a thermodynamic database to calculation of surface tension for iron base liquid alloys. Steel Res 65:21–28

    Google Scholar 

  13. Brillo J, Egry I (2005) Surface tension of nickel, copper, iron and their binary alloys. J Mater Sci 40:2213–2216. doi:10.1007/s10853-005-1935-6

    Article  Google Scholar 

  14. Brillo J, Plevachuk Y, Egry I (2010) Surface tension of liquid Al–Cu–Ag ternary alloys. J Mater Sci 45:5150–5157. doi:10.1007/s10853-010-4512-6

    Article  Google Scholar 

  15. Kaptay G (2008) A Calphad-compatible method to calculate liquid/liquid interfacial energies in immiscible metallic systems. Calphad 32:338–352

    Article  Google Scholar 

  16. Kaptay G (2012) On the interfacial energy of coherent interfaces. Acta Mater 60:6804–6813

    Article  Google Scholar 

  17. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C—the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  18. Yu SK, Sommer F, Predel B (1996) Isopiestic measurements and assessment of the AI–Pb system. Z Metallkd 87:574–580

    Google Scholar 

  19. Kim SS, Sanders TH (2006) Thermodynamic assessment of the metastable liquid in the Al–In, Al–Bi and Al–Pb systems. Modell Simul Mater Sci Eng 14:1181–1188

    Article  Google Scholar 

  20. Mirkovic D, Gröbner J, Kaban I, Hoyer W, Schmid-Fetzer R (2009) Integrated approach to thermodynamics, phase relations, liquid densities and solidification microstructures in the Al-Bi-Cu system. Int J Mat Res 100:176–188

    Article  Google Scholar 

  21. Bamberger M, Munitz M, Kaufman L, Abbaschian R (2002) Evaluation of the stable and metastable Cu–Co–Fe phase diagrams. Calphad 26:375–384

    Article  Google Scholar 

  22. Cao W, Chen S, Zhang F, Wu K, Yang Y, Chang Y, Schmid-Fetzer R, Oates WA (2009) PANDAT software with PanEngine, panoptimizer and PanPrecipitation for materials property simulation of multi-component systems. Calphad 33:328–342

    Article  Google Scholar 

  23. Kaptay G (2005) Modeling interfacial energies in metallic systems. Mater Sci Forum 473–474:1–10

    Article  Google Scholar 

  24. Schenk T, Holland-Moritz D, Simonet V, Bellissent R, Herlach DM (2002) Icosahedral short-range order in deeply undercooled metallic melts. Phys Rev Lett 89:075507-1–075507-4

    Article  Google Scholar 

  25. Assael MJ, Kakosimos K, Banish RM, Brillo J, Egry I, Brooks R, Quested PN, Mills KC, Nagashima A, Sato Y, Wakeham WA (2006) Reference data for the density and viscosity of liquid aluminium and liquid iron. J Phys Chem Ref Data 35:285–300

    Article  Google Scholar 

  26. Assael MJ, Armyra IJ, Brillo J, Stankus SV, Wu J, Wakeham WA (2012) Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc. J Phys Chem Ref Data 41(33101):1–27

    Google Scholar 

  27. Assael MJ, Kalyva AE, Antonia KD, Banish RM, Egry I, Wu J, Kashnitz E, Wakeham WA (2012) Reference data for the density and viscosity of liquid antimony, bismuth, lead, nickel and silver. High Temp—High Press 41:161–184

    Google Scholar 

  28. Brillo J, Egry I, Matsushita T (2006) Density and excess volumes of liquid copper, cobalt, iron and their binary and ternary alloys. Int J Mat Res (formerly Z Metallkd) 97:1526–1532

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank the following persons for their critical reading of the manuscript and for valuable suggestions: Philipp Kuhn, Dirk Holland-Moritz, Lorenz Ratke, and Matthias Kolbe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Brillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brillo, J., Schmid-Fetzer, R. A model for the prediction of liquid–liquid interfacial energies. J Mater Sci 49, 3674–3680 (2014). https://doi.org/10.1007/s10853-014-8074-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8074-x

Keywords

Navigation