Skip to main content
Log in

Effect of sintering temperature on phase structure, microstructure, and electrical properties of (K0.5Na0.5)NbO3–(Ba0.6Sr0.4)0.7Bi0.2TiO3 lead-free ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lead-free 0.98(K0.5Na0.5)NbO3–0.02(Ba0.6Sr0.4)0.7Bi0.2TiO3 (abbreviated as 0.98KNN–0.02BSBT) ceramics were prepared by the conventional solid-state sintering method. Effect of sintering temperature on 0.98KNN–0.02BSBT ceramics was systematically investigated. The frequency dependent dielectric permittivities show that the ceramics sintered at different temperatures are indeed “relaxor-like” ferroelectric ceramics, which possess a diffuse phase transition without a strong frequency dispersion of dielectric permittivity. The diffuseness parameter γ, the comparison of the relaxor behavior based on empirical parameters (ΔT diffuse) and the slimmer P–E hysteresis loops confirm that the “relaxor-like” characteristics of the ceramics are strengthened with increasing sintering temperature. At the optimum sintering temperature, the dielectric permittivity maximum (ɛ max) has a value of approximately 2795 (at 1 KHz), \( \tan \delta \) is lower than 2.5 % and the diffuseness parameter γ = 1.68 at a broad usage temperature range (150–350 °C), which indicate its potential application in high temperature multilayer ceramics capacitor field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eitel RE, Randall CA, Shrout TR, Park SE (2002) Preparation and characterization of high temperature perovskite ferroelectrics in the solid solution (1−x)BiScO3–(x)PbTiO3. Jpn J Appl Phys 41(4a):2099

    Article  CAS  ADS  Google Scholar 

  2. Ryu J, Priya S, Uchino K (2003) High-Tm relaxor ferroelectrics: 0.3BiScO3–0.6PbTiO3–0.1Pb(Mn1/3Nb2/3)O3. Appl Phys Lett 82:251

    Article  CAS  ADS  Google Scholar 

  3. Zhang SJ, Stringer CJ, Xia R, Choi SM, Randall CA, Shrout TR (2005) Investigation of bismuth-based perovskite system: (1−x)Bi(Ni2/3Nb1/3)O3xPbTiO3. J Appl Phys 98(3):034103

    Article  ADS  Google Scholar 

  4. Stringer CJ, Randall CA (2007) In situ TEM investigations of the high-temperature relaxor ferroelectric BiScO3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary solid solution. J Am Ceram Soc 90(6):1802–1807

    Article  CAS  Google Scholar 

  5. Stringer CJ, Donnelly NJ, Shrout TR et al (2008) Dielectric characteristics of perovskite-structured high-temperature relaxor ferroelectrics: the BiScO3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary system. J Am Ceram Soc 91(6):1781–1787

    Article  CAS  Google Scholar 

  6. Jiang YH, Zhao Y, Qin BQ, Jiang YZ (2008) Dielectric and piezoelectric properties of (1−x)(Bi(1−y)Li y ) × (Sc1−y Sb y )O3xPbTiO3 high-temperature relaxor ferroelectric ceramics. Appl Phys Lett 93:022904

    Article  ADS  Google Scholar 

  7. Yuan Y, Zhao CJ, Zhou XH (2010) High-temperature stable dielectrics in Mn-modified (1−x)Bi0.5Na0.5TiO3xCaTiO3 ceramics. J Electroceram 25:212–217

    Article  CAS  Google Scholar 

  8. Dittmer R, Jo W, Damjanovic D, Rodel J (2011) Lead-free high-temperature dielectrics with wide operational range. J Appl Phys 109:034107

    Article  ADS  Google Scholar 

  9. Dittmer R, Anton EM, Jo W (2012) A high-temperature-capacitor dielectric based on K0.5Na0.5NbO3-modified Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3. J Am Ceram Soc 95:3519–3524

    Article  CAS  Google Scholar 

  10. Ogihara H, Randall CA, McKinstry ST (2009) Weakly coupled relaxor behavior of BaTiO3–BiScO3 ceramics. J Am Ceram Soc 92:110–118

    Article  CAS  Google Scholar 

  11. Ogihara H, Randall CA, Trolier-McKinstry S (2009) High temperature and high energy density dielectric materials’. J Am Ceram Soc 92:106–113

    Google Scholar 

  12. Lim JB, Zhang SJ, Kim N (2009) High-temperature dielectrics in the BiScO3–BaTiO3–(K1/2Bi1/2)TiO3 ternary system. J Am Ceram Soc 92:679–682

    Article  CAS  Google Scholar 

  13. Lim JB, Zhang S, Shrout TR (2011) High temperature capacitors using a BiScO3–BaTiO3–(K1/2Bi1/2)TiO3 ternary system. Electron Mater Lett 7:71–75

    Article  CAS  ADS  Google Scholar 

  14. Raengthon N, Sebastian T, Cumming D (2012) BaTiO3–Bi(Zn1/2Ti1/2)O3–BiScO3 ceramics for high-temperature capacitor applications. J Am Ceram Soc 95:3554–3561

    Article  CAS  Google Scholar 

  15. Raengthon N, Cann DP (2012) High temperature electronic properties of BaTiO3–Bi(Zn1/2Ti1/2)O3–BiInO3 for capacitor applications. J Electroceram 28:167–171

    Google Scholar 

  16. Yang ZP, Chao XL, Li Z (2012) Phase structures, electrical properties and temperature stability of (1−x)[(K0.458Na0.542)0.96Li0.04](Nb0.85Ta0.15)O3xBiFeO3 ceramics. J Alloy Compd 518:1–5

    Article  Google Scholar 

  17. Du HL, Zhou WC, Luo F (2008) High Tm lead-free relaxor ferroelectrics with broad temperature usage range: 0.04BiScO3–0.96(K0.5Na0.5) NbO3. J Appl Phys 104:044104

    Article  ADS  Google Scholar 

  18. Wu JG, Xiao DQ, Wang YY (2008) Improved temperature stability of CaTiO3-modified [(K0.5Na0.5)0.96Li0.04](Nb0.91Sb0.05 Ta0.04)O3 lead-free piezoelectric ceramics. J Appl Phys 104:024102

    Article  ADS  Google Scholar 

  19. Du HL, Zhou WC, Luo F (2009) Phase structure, dielectric properties, and relaxor behavior of (K0.5Na0.5) NbO3–(Ba0.5Sr0.5)TiO3 lead-free solid solution for high temperature applications. J Appl Phys 105:124104

    Article  ADS  Google Scholar 

  20. Du HL, Zhou WC, Luo F (2010) New lead-free relaxor ferroelectrics derived from (K0.5Na0.5)NbO3 for high temperature applications. Ferroelectrics 401:141–147

    Article  CAS  Google Scholar 

  21. Zhao JB, Du HL, Qu SB (2011) The effects of Bi(Mg2/3Nb1/3)O3 on piezoelectric and ferroelectric properties of K0.5Na0.5NbO3 lead-free piezoelectric ceramics. J Alloys Compd 509:3537–3540

    Article  CAS  Google Scholar 

  22. Cheng HL, Du HL, Zhou WC (2013) Bi(Zn2/3Nb1/3)O3–(K0.5Na0.5)NbO3 high-temperature lead-free ferroelectric ceramics with low capacitance variation in a broad temperature usage range. J Am Ceram Soc 96:833–837

    Article  CAS  Google Scholar 

  23. Cheng HL, Zhou WC, Du HL (2013) Enhanced dielectric relaxor properties in (1−x)(K0.5Na0.5)NbO3–x(Ba0.6Sr0.4)0.7Bi0.2TiO3 lead-free ceramic. J Alloy Compd. doi:10.1016/j.jallcom.2013.06.077

    Google Scholar 

  24. Zhao P, Zhang BP, Li JF (2007) High piezoelectric d33 coefficient in Li-modified lead-free (Na, K)NbO3 ceramics sintered at optimal temperature. Appl Phys Lett 90:242909

    Article  ADS  Google Scholar 

  25. Li JF, Zhen Y, Zhang BP, Zhang LM, Wang K (2008) Normal sintering of (K, Na)NbO3-based lead-free piezoelectric ceramics. Ceram Int 34:783–786

    Article  CAS  Google Scholar 

  26. Wang K, Li JF (2010) Low-temperature sintering of Li-modified (K, Na)NbO3 lead-free ceramics: sintering behavior, microstructure, and electrical properties. J Am Ceram Soc 93:1101–1107

    Article  CAS  Google Scholar 

  27. Fang J, Wang XH, Zuo RZ (2011) Narrow sintering temperature window for (K, Na)NbO3-based lead-free piezoceramics caused by compositional segregation. Phys Status Solidi A 208:791–794

    Article  CAS  ADS  Google Scholar 

  28. Du H, Tang F, Luo F, Zhu D, Qu S, Pei Z, Zhou W (2007) Influence of sintering temperature on piezoelectric properties of (K0.5Na0.5)NbO3–LiNbO3 lead-free piezoelectric ceramics. Mater Res Bull 42:1594–1601

    Article  CAS  Google Scholar 

  29. Fisher JG, Kang SL (2009) Microstructural changes in (K0.5Na0.5)NbO3 ceramics sintered in various atmospheres. J Eur Ceram Soc 29:2581–2588

    Article  CAS  Google Scholar 

  30. Zhao YJ, Zhao YZ, Huang RX (2011) Effect of sintering temperature on microstructure and electric properties of 0.95(K0.5Na0.5)NbO3–0.05Li(Nb0.5Sb0.5)O3 with copper oxide sintering aid. J Am Ceram Soc 94:656–659

    Article  CAS  Google Scholar 

  31. Liang WF, Xiao DQ, Wu WJ (2011) Effect of sintering temperature on phase transitions, properties and temperature stability of (K0.465Na0.465Li0.07)(Nb0.95Sb0.05)O3 lead-free piezoelectric ceramics. Curr Appl Phys 11:S138–S142

    Article  ADS  Google Scholar 

  32. Shao B, Qiu JH, Zhu KJ (2012) Influence of sintering temperature on microstructure and electric properties of CuO doped alkaline niobate-based lead-free ceramics. J Mater Sci 23:1455–1461. doi:10.1007/s10854-011-0611-7

    CAS  Google Scholar 

  33. Birol H, Damjanovic D, Setter N (2006) Preparation and characterization of (K0.5Na0.5)NbO3 ceramics. J Eur Ceram Soc 26:861–866

    Article  CAS  Google Scholar 

  34. Uchino K, Nomura S (1982) Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectr Lett Sect 44:55–61

    Article  CAS  Google Scholar 

  35. Chen W, Yao X, Wei XY (2007) Tunability and ferroelectric relaxor properties of bismuth strontium titanate ceramics. Appl Phys Lett 90:182902

    Article  ADS  Google Scholar 

  36. Shvartsman VV, Lupascu DC (2012) Lead-free relaxor ferroelectrics. J Am Ceram Soc 95:1–26

    Article  CAS  Google Scholar 

  37. Du HL, Zhou WC, Luo F et al (2008) Sintering characteristic, microstructure, and dielectric relaxor behavior of (K0.5Na0.5)NbO3-(Bi0.5Na0.5)TiO3 lead-free ceramics. J Am Ceram Soc 91:2903–2909

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Doctorate Foundation of Northwestern Polytechnical University (No. CX201108), the National Natural Science Foundation of China (Grant No. 51072165), and the fund of State Key Laboratory of Solidification Processing in NWPU (No. KP200901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hualei Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, H., Zhou, W., Du, H. et al. Effect of sintering temperature on phase structure, microstructure, and electrical properties of (K0.5Na0.5)NbO3–(Ba0.6Sr0.4)0.7Bi0.2TiO3 lead-free ceramics. J Mater Sci 49, 1824–1831 (2014). https://doi.org/10.1007/s10853-013-7870-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7870-z

Keywords

Navigation