Skip to main content
Log in

Effects of hybrid fillers on the electromagnetic interference shielding effectiveness of polyamide 6/conductive filler composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of hybrid conductive fillers on the electrical conductivity and electromagnetic interference shielding effectiveness (EMI SE) of polyamide 6 (PA6)/conductive filler composites were investigated. Nickel-coated carbon fiber (NCCF) was used as the main filler and multi-walled carbon nanotube (MWCNT), nickel-coated graphite, carbon black, and titanium dioxide (TiO2) were used as the second fillers in this study. From the results of morphological studies of the PA6/NCCF/second filler composites, NCCF easily formed an electrical pathway since it has a high aspect ratio and random orientation, and the second fillers seemed to disperse evenly in the PA6 matrix. The electrical conductivity and EMI SE of the PA6/NCCF composites were increased with the increase of NCCF content. Among the second fillers used in this study, TiO2 appeared to be the most effective second filler with regard to increasing the EMI SE and electrical conductivity of the PA6/NCCF composite. This was probably because TiO2 has a high dielectric constant with dominant dipolar polarization, consequently leading to greater shielding effectiveness due to the absorption of electromagnetic waves. From the above results of EMI SE and electrical conductivity, it was suggested that the TiO2 produced a synergistic effect when it was hybridized with the NCCF of the PA6/NCCF/TiO2 composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang CY, Wu CC (2000) The EMI shielding effectiveness of PC/ABS/nickel-coated-carbon-fiber composites. Eur Polym J 36:2729

    Article  CAS  Google Scholar 

  2. Chung DDL (2000) Materials for electromagnetic interference shielding. J Mater Eng Perform 9:350

    Article  CAS  Google Scholar 

  3. Park DH, Kan TG, Lee YK, Kim WN (2013) Effect of multi-walled carbon nanotube dispersion on the electrical and rheological properties of poly(propylene carbonate)/poly(lactic acid)/multi-walled carbon nanotube composites. J Mater Sci 48:481. doi:10.1007/s10853-012-6762-y

    Article  CAS  ADS  Google Scholar 

  4. Zhang L, Wang LB, See KY, Ma J (2013) Effect of carbonfiber reinforcement on electromagnetic interference shielding effectiveness of syntactic foam. J Mater Sci 48:7757. doi:10.1007/s10853-013-7597-x

    Article  CAS  ADS  Google Scholar 

  5. Caton PD (1991) Magnesium: an old material with new applications. Mater Design 12:309

    Article  CAS  ADS  Google Scholar 

  6. Roy N, Bhowmick A (2012) In situ preparation, morphology and elctrical properties of carbon nanofiber/polydimethylsiloxane nanocomposites. J Mater Sci 47:272. doi:10.1007/s10853-011-5795-y

    Article  CAS  ADS  Google Scholar 

  7. Das A, Hayvaci HT, Tiwari MK, Bayer IS, Erricolo D, Megaridis CM (2011) Superhydrophobic and conductive carbon nanofiber/PTFE composite coatings for EMI shielding. J Coll Interface Sci 353:311

    Article  CAS  Google Scholar 

  8. Hussain FA, Zihlif AM (1993) Electrical properties of nickel-coated carbon-fiber/nylon 66 composite. J Thermopla Compos Mater 6:120

    Article  CAS  Google Scholar 

  9. Lu G, Li X, Jiang H (1996) Electrical and shielding properties of ABS resin filled with nickel-coated carbon fibers. Compos Sci Technol 56:193

    Article  CAS  Google Scholar 

  10. Lee YK, Jang SH, Kim MS, Kim WN, Yoon HG, Park SD, Kim ST, Lee JD (2010) Effect of multi-walled carbon nanotube on the electrical, morphological and mechanical properties of polypropylene/nickel-coated carbon fiber composites. Macromol Res 18:241

    Article  CAS  Google Scholar 

  11. Jeong N, Han SO, Kim H, Kim HS, You YJ (2011) Growth of multi-walled carbon nanotubes by catalytic decomposition of acetylene on Ni-supported carbon fibers prepared by the heat-treatment of cellulose fibers. J Mater Sci 46:2041. doi:10.1007/s10853-010-5036-9

    Article  CAS  ADS  Google Scholar 

  12. Park DH, Lee YK, Park SS, Lee CS, Kim SH, Kim WN (2013) Effects of hybrid fillers on the electrical conductivity and EMI shielding efficiency of polypropylene/conductive filler composites. Macromol Res 21:905

    Article  CAS  Google Scholar 

  13. Liu Z, Bai GB, Huang Y, Ma Y, Du F, Li F, Guo T, Chen Y (2007) Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 45:821

    Article  CAS  Google Scholar 

  14. Sung YT, Han MS, Song KH, Jung JW, Lee HS, Kum CK, Joo J, Kim WN (2006) Rheological and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Polymer 47:4434

    Article  CAS  Google Scholar 

  15. Gupta A, Choudhary V (2011) Electromagnetic interference shielding behavior of poly(trimethylene terephthalate)/multi-walled carbon nanotube composites. Compos Sci Technol 71:1563

    Article  CAS  Google Scholar 

  16. Khare RA, Bhattacharyya AR, Kulkarni AR (2011) Melt-mixed polypropylene/acrylonitrile-butadiene-styrene blends with multiwall carbon nanotubes: effect of compatibilizer and modifier on morphology and electrical conductivity. J Appl Polym Sci 120:2663

    Article  CAS  Google Scholar 

  17. You KM, Park SS, Lee CS, Kim JM, Park GP, Kim WN (2011) Preparation and characterization of conductive carbon nanotube-polyurethane foam composites. J Mater Sci 46:6850. doi:10.1007/s10853-011-5645-y

    Article  CAS  ADS  Google Scholar 

  18. Li QF, Xu Y, Yoon JS, Chen GX (2011) Dispersion of carbon nanotubes/polyhedral oligomeric silsesquioxanes hybrids in polymer: the mechanical, electrical and EMI shielding properties. J Mater Sci 46:2324. doi:10.1007/s10853-010-5077-0

    Article  CAS  ADS  Google Scholar 

  19. Papanicolaou GC, Papaefthymiou KP, Koutsomitopoulou AF, Portan DV, Zaoutsos SP (2012) Effect of dispersion of MWCNTs on the static and dynamic mechanical behavior of epoxy matrix nanocomposites. J Mater Sci 47:350. doi:10.1007/s10853-011-5804-1

    Article  CAS  ADS  Google Scholar 

  20. Ashrafi B, Backman D, Johnston A, Martinez-Rubi Y, Simard B (2013) Effects of SWCNTs on mechanical and thermal performance of epoxy at elevated temperatures. J Mater Sci 48:7664. doi:10.1007/s10853-013-7584-2

    Article  CAS  ADS  Google Scholar 

  21. Zou H, Zhang L, Tian M, Wu S, Zhao S (2010) Study on the structure and properties of conductive silicone rubber filled with nickel-coated graphite. J Appl Polym Sci 115:2710

    Article  CAS  Google Scholar 

  22. Sachdev VK, Patel K, Bhattacharya S, Tandon RP (2011) Electromagnetic interference shielding of graphite/acrylonitrile butadiene styrene composites. J Appl Polym Sci 120:1100

    Article  CAS  Google Scholar 

  23. Im JS, Kim JG, Lee YS (2009) Fluorination effects of carbon black additives for electrical properties and EMI shielding efficiency by improved dispersion and adhesion. Carbon 47:2640

    Article  CAS  Google Scholar 

  24. Rahaman M, Chaki TK, Khastgir D (2011) Development of high performance EMI shielding material from EVA, NBR, and their blends: effect of carbon black structure. J Mater Sci 46:3989. doi:10.1007/s10853-011-5326-x

    Article  CAS  ADS  Google Scholar 

  25. Bigg DM, Stutz DE (1983) Plastic composites for electromagnetic interference shielding applications. Polym Compos 4:40

    Article  CAS  Google Scholar 

  26. Paul CR (1998) Introduction to electromagnetic compatibility. Wiley, Hoboken

    Google Scholar 

  27. Ma PC, Liu MY, Zhang H, Wang SQ, Wang R, Wang K, Wong YK, Tang BZ, Hong SH, Paik KW, Kim JK (2009) Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl Mater Interfaces 1:1090

    Article  PubMed  CAS  Google Scholar 

  28. Socher R, Krause B, Hermasch S, Wursche R, Pötschke P (2011) Electrical and thermal properties of polyamide 12 composites with hybrid fillers systems of multiwalled carbon nanotubes and carbon black. Compos Sci Technol 71:1053

    Article  CAS  Google Scholar 

  29. Sumfleth J, Buschhorn ST, Schulte K (2011) Comparison of rheological and electrical percolation phenomena in carbon black and carbon nanotube filled epoxy polymers. J Mater Sci 46:659. doi:10.1007/s10853-010-4788-6

    Article  CAS  ADS  Google Scholar 

  30. Hong J, Park DW, Shim SE (2012) Electrical, thermal, and rheological properties of carbon black and carbon nanotube dual filler-incorporated poly(dimethylsiloxane) nanocomposites. Macromol Res 20:465

    Article  CAS  Google Scholar 

  31. Vivet A, Doudou BB, Poilane C, Chen J, Ayachi M (2011) A method for the chemical anchoring of carbon nanotubes onto carbon fibre and its impact on the strength of carbon fibre composites. J Mater Sci 46:1322. doi:10.1007/s10853-010-4919-0

    Article  CAS  ADS  Google Scholar 

  32. Lachman N, Qian H, Houlle M, Amadou J, Shaffer MSP, Wagner HD (2013) Fracture behavior of carbon nanotube/carbon microfiber hybrid polymer composites. J Mater Sci 48:5590. doi:10.1007/s10853-013-7353-2

    Article  CAS  ADS  Google Scholar 

  33. Zheming G, Chunzhong L, Gengchao W, Ling Z, Qilin C, Xiaohui L, Wendong W, Shilei J (2010) Electrical properties and morphology of highly conductive composites based on polypropylene and hybrid fillers. J Ind Eng Chem 16:10

    Article  Google Scholar 

  34. Drubetski M, Siegmann A, Narkis M (2007) Electrical properties of hybrid carbon black/carbon fiber polypropylene composites. J Mater Sci 42:1. doi:10.1007/s10853-006-1203-4

    Article  CAS  ADS  Google Scholar 

  35. Thongruang W, Spontak RJ, Balik CM (2002) Correlated electrical conductivity and mechanical property analysis of high-density polyethylene filled with graphite and carbon fiber. Polymer 43:2279

    Article  CAS  Google Scholar 

  36. Joo J, Lee CY (2000) High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers. J Appl Phys 88:513

    Article  CAS  ADS  Google Scholar 

  37. Ryu Y, Yin L, Yu C (2012) Dramatic electrical conductivity improvement of carbon nanotube networks by simultaneous de-bundling and hole-doping with chlorosulfonic acid. J Mater Chem 22:6959

    Article  CAS  Google Scholar 

  38. Primak W, Fuchs LH (1954) Electrical conductivities of natural graphite crystals. Phys Rev 95:22

    Article  ADS  Google Scholar 

  39. Dhawan SK, Singh K, Bakhshi AK, Ohlan A (2009) Conducting polymer embedded with nanoferrite and titanium dioxide nanoparticles for microwave absorption. Synth Met 159:2259

    Article  CAS  Google Scholar 

  40. Kim HM, Kim K, Lee CY, Joo J, Cho SJ, Yoon HS (2004) Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl Phys Lett 84:589

    Article  CAS  ADS  Google Scholar 

  41. Colaneri NF, Shacklette LW (1992) EMI shielding measurements of conductive polymer blends. IEEE Trans Instrum Meas 41:291

    Article  Google Scholar 

Download references

Acknowledgements

This work (Grant No. C0102544) was supported by Business for Cooperative R&D between Industry, Academy, and Research Institute funded by the Korea Small and Medium Business Administration in 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Nyon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, T.W., Lee, Y.K., Lim, S.J. et al. Effects of hybrid fillers on the electromagnetic interference shielding effectiveness of polyamide 6/conductive filler composites. J Mater Sci 49, 1701–1708 (2014). https://doi.org/10.1007/s10853-013-7855-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7855-y

Keywords

Navigation