Skip to main content
Log in

Negative thermal expansion in a zirconium tungstate/epoxy composite at low temperatures

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have investigated a composite of cubic α-ZrW2O8 and epoxy with a high ceramic loading for its thermal expansion properties at cryogenic temperatures. The composite was fabricated by allowing the ceramic to sediment in the epoxy resin before curing, using only the dense bottom fraction of the composite for further measurements. Density measurements and thermogravimetric analysis showed that the samples repeatably consisted of approximately 60 vol% tungstate without significant voids. The coefficient of thermal expansion was measured by dilatometry at temperatures from 25 to 300 K, and we found negative thermal expansion occurring at temperatures below about 100 K. The observed behavior is consistent with predictions produced by a variational model, which shows that the high ceramic loading is necessary to reliably achieve negative thermal expansion in the composite. The composite has potential applications as compensators for unwanted thermal expansion at low temperatures and for fiber-optic cryogenic temperature sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Miller W, Smith CW, Dooling P, Burgess AN, Evans KE (2008) Phys Status Solidi B 245(3):552–556. doi:10.1002/pssb.200777710

    Article  CAS  ADS  Google Scholar 

  2. Rajini-Kumar R, Suesser M, Narayankhedkar KG, Krieg G, Atrey MD (2008) Cryogenics 48(3–4):142–147. doi:10.1016/j.cryogenics.2008.02.007

    Article  CAS  ADS  Google Scholar 

  3. Shiue S-T, Lien P-T, He JL (2000) J Appl Phys 87(8):3759–3762. doi:10.1063/1.372410

    Article  CAS  ADS  Google Scholar 

  4. Miller W, Smith CW, Mackenzie DS, Evans KE (2009) J Mater Sci 44(20):5441–5451. doi:10.1007/s10853-009-3692-4

    Article  CAS  ADS  Google Scholar 

  5. Korthuis V, Khosrovani N, Sleight AW, Roberts N, Dupree R, Warren WW (1995) Chem Mater 7(2):412–417. doi:10.1021/cm00050a028

    Article  CAS  Google Scholar 

  6. Mary TA, Evans JSO, Vogt T, Sleight AW (1996) Science 272(5258):90–92. doi:10.1126/science.272.5258.90

    Article  CAS  ADS  Google Scholar 

  7. Evans JSO, Mary TA, Sleight AW (1997) J Solid State Chem 133(2):580–583. doi:10.1006/jssc.1997.7605

    Article  CAS  ADS  Google Scholar 

  8. Attfield MP, Sleight AW (1998) Chem Mater 10(7):2013–2019. doi:10.1021/cm9801587

    Article  CAS  Google Scholar 

  9. Lightfoot P, Woodcock DA, Maple MJ, Villaescusa LA, Wright PA (2001) J Mater Chem 11(1):212–216. doi:10.1039/b002950p

    Article  CAS  Google Scholar 

  10. Pryde AKA, Hammonds KD, Dove MT, Heine V, Gale JD, Warren MC (1997) Phase Transitions 61(1–4):141–153. doi:10.1080/01411599708223734

    Article  CAS  Google Scholar 

  11. Shi JD, Pu ZJ, Wu K-H, Larkins G (1996) Proc Mat Res Soc 445:229. doi:10.1557/PROC-445-229

    Article  Google Scholar 

  12. Tani J, Kimura H, Hirota K, Kido H (2007) J Appl Polym Sci 106(5):3343–3347. doi:10.1002/App.27025

    Article  CAS  Google Scholar 

  13. Sullivan LM, Lukehart CM (2005) Chem Mater 17(8):2136–2141. doi:10.1021/Cm0482737

    Article  CAS  Google Scholar 

  14. Lind C, Coleman MR, Kozy LC, Sharma GR (2011) Phys Status Solidi B 248(1):123–129. doi:10.1002/pssb.201083967

    Article  CAS  ADS  Google Scholar 

  15. Badrinarayanan P, Kessler MR (2011) Compos Sci Technol 71(11):1385–1391. doi:10.1016/j.compscitech.2011.05.004

    Article  CAS  Google Scholar 

  16. Weyer WC, Cross WM, Henderson B, Kellar JJ, Kjerengtroen L, Welsh J, Starkovich J (2005) Paper presented at the proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics & materials conference, Austin, TX

  17. Banek NA, Baiz HI, Latigo A, Lind C (2010) J Am Chem Soc 132(24):8278–8279. doi:10.1021/ja101475f

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Tack JL (2006) Thermodynamic and mechanical properties of EPON 862 with curing agent DETDA by molecular simulations. Master’s Thesis, Texas A&M University, College Station, TX

  19. Liu WC, Varley RJ, Simon GP (2007) Polymer 48(8):2345–2354. doi:10.1016/j.polymer.2007.02.022

    Article  CAS  Google Scholar 

  20. Neely LA, See E, Robinson HD, Kochergin V (2012) Phys Status Solidi B 249(9):1698–1703. doi:10.1002/pssb.201248121

    Article  CAS  ADS  Google Scholar 

  21. Schapery RA (1968) J Compos Mater 2(3):380–404. doi:10.1177/002199836800200308

    Article  Google Scholar 

  22. Hashin Z, Shtrikman S (1963) J Mech Phys Sol 11(2):127–140. doi:10.1016/0022-5096(63)90060-7

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Ernst G, Broholm C, Kowach GR, Ramirez AP (1998) Nature 396(6707):147–149. doi:10.1038/24115

    Article  CAS  ADS  Google Scholar 

  24. Drymiotis FR, Ledbetter H, Betts JB, Kimura T, Lashley JC, Migliori A, Ramirez AP, Kowach GR, Van Duijn J (2004) Phys Rev Lett 93(2):025502. doi:10.1103/PhysRevLett.93.025502

    Article  PubMed  CAS  ADS  Google Scholar 

  25. Hartwig G (1994) Polymer properties at room and cryogenic temperatures. The international cryogenics monograph series. Plenum Press, New York

    Book  Google Scholar 

  26. Cease H (2006) Measurement of mechanical properties of three epoxy adhesives at cryogenic temperatures. Fermilab Technical Memos, vol TM-2366-A. Fermi National Accelerator Laboratory, Batavia, IL

  27. Hartwig G (1979) In: Clark AF, Reed RP, Hartwig G (eds) Nonmetallic materials and composites at low temperatures. Plenum Press, New York, pp 33–50

    Chapter  Google Scholar 

  28. Perepechko I (1980) Low-temperature properties of polymers (trans: Beknazarov A). Pergamon Press, London

  29. Simha R, Roe JM, Nanda VS (1972) J Appl Phys 43(11):4312–4317. doi:10.1063/1.1660921

    Article  CAS  ADS  Google Scholar 

  30. Roy R, Agrawal DK, McKinstry HA (1989) Annu Rev Mater Sci 19(1):59–81. doi:10.1146/annurev.ms.19.080189.000423

    Article  CAS  ADS  Google Scholar 

  31. Chen JC, Huang GC, Hu C, Weng JP (2003) Scripta Mater 49(3):261–266. doi:10.1016/S1359-6462(03)00213-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by ARRA contract DE-SC0001964. We would like to thank Madrakhim Zaynetdinov for help with sample preparation, and Dr. Alex Aning and Ibrahim Khalfallah for assistance with the powder XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans D. Robinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neely, L.A., Kochergin, V., See, E.M. et al. Negative thermal expansion in a zirconium tungstate/epoxy composite at low temperatures. J Mater Sci 49, 392–396 (2014). https://doi.org/10.1007/s10853-013-7716-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7716-8

Keywords

Navigation