Skip to main content
Log in

Microstructural evolution and superplastic behavior in friction stir processed Mg–Li–Al–Zn alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A Mg–Li–Al–Zn alloy was friction stir processed (FSP) under water, and the microstructures and superplastic behavior in the FSP alloy were investigated. The FSP Mg–Li–Al–Zn alloy consisted of a mixed microstructure with fine, equiaxed, and recrystallized α (hcp) and β (bcc) grains surrounded by high-angle grain boundaries, and the average grain size of the α and β grains was ~1.6 and ~6.8 μm, respectively. The fine α grains played a critical role in providing thermal stability for the β grains. The FSP Mg–Li–Al–Zn alloy exhibited low-temperature superplasticity with a ductility of 330 % at 100 °C and high strain rate superplasticity with ductility of ≥400 % at 225–300 °C. Microstructural examination and superplastic data analysis revealed that the dominant deformation mechanism for the FSPed Mg–Li–Al–Zn alloy is grain boundary sliding, which is controlled by the grain boundary diffusion in the β phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cao FR, Ding H, Li YL, Zhou G, Cui JZ (2010) Mater Sci Eng, A 527:2335

    Article  Google Scholar 

  2. Chang TC, Wang JY, Chu CL, Lee SY (2006) Mater Lett 60:3272

    Article  CAS  Google Scholar 

  3. Nayeb Hashemi AA, Clark JB, Pelton AD (1984) Bull Alloy Phase Diagr 5:365

    Article  CAS  Google Scholar 

  4. Sherby OD, Wadsworth J (1989) Prog Mater Sci 33:169

    Article  CAS  Google Scholar 

  5. Ma ZY, Liu FC, Mishra RS (2010) Acta Mater 58:4693

    Article  CAS  Google Scholar 

  6. Langdon TG (2009) J Mater Sci 44:5998. doi:10.1007/s10853-009-3780-5

    Article  CAS  Google Scholar 

  7. Liu FC, Ma ZY (2009) J Mater Sci 44:2647. doi:10.1007/s10853-009-3346-6

    Article  CAS  Google Scholar 

  8. Watanabe H, Mukai T, Nieh TG, Hihashi K (2000) Scripta Mater 42:249

    Article  CAS  Google Scholar 

  9. Nieh TG, Hsiung LM, Wadsworth J, Kaibyshev R (1998) Acta Mater 46:2789

    Article  CAS  Google Scholar 

  10. Mishra RS, Bieler TR, Mukherjee AK (1997) Acta Metall Mater 45:561

    Article  CAS  Google Scholar 

  11. Taleff EM, Ruano OA, Wolfenstine J, Sherby OD (1992) J Mater Res 7:2131

    Article  CAS  Google Scholar 

  12. Yoshida Y, Cisar L, Kamado S, Kojima Y (2002) Mater Trans 43:2419

    Article  CAS  Google Scholar 

  13. Wang JY, Chang TC, Chang LZ, Lee S (2006) Mater Trans 47:971

    Article  CAS  Google Scholar 

  14. Dong SL, Imai T, Lim SW, Kanetake N, Saito N (2008) Mater Manuf Processes 23:336

    Article  CAS  Google Scholar 

  15. Liu XH, Du GJ, Wu RZ, Niu ZY, Zhang ML (2011) J Alloys Compd 509:9558

    Article  CAS  Google Scholar 

  16. Mishra RS, Ma ZY (2005) Mater Sci Eng, R 50:1

    Article  Google Scholar 

  17. Liu FC, Ma ZY, Chen LQ (2009) Scripta Mater 60:968

    Article  CAS  Google Scholar 

  18. Liu FC, Ma ZY (2010) Scripta Mater 62:125

    Article  CAS  Google Scholar 

  19. Liu FC, Ma ZY (2011) Mater Sci Eng, A 530:548

    Article  CAS  Google Scholar 

  20. Liu FC, Xue P, Ma ZY (2012) Mater Sci Eng, A 547:55

    Article  CAS  Google Scholar 

  21. Johanes LB, Mishra RS (2007) Mater Sci Eng, A 464:255

    Article  Google Scholar 

  22. Ma ZY, Mishra RS, Liu FC (2009) Mater Sci Eng, A 505:70

    Article  Google Scholar 

  23. Yang Q, Xiao BL, Ma ZY, Chen RS (2011) Scripta Mater 65:335

    Article  CAS  Google Scholar 

  24. Shin HS, Jeong YJ, Ahn JH (2007) J Alloys Compd 434–435:40

    Article  Google Scholar 

  25. Hofman DC, Vecchio KS (2005) Mater Sci Eng, A 402:234

    Article  Google Scholar 

  26. Chai F, Zhang DT, Li YY, Zhang WW (2013) Mater Sci Eng, A 568:40

    Article  CAS  Google Scholar 

  27. Dong HW, Xu SW, Wang LD, Kamado S, Wang LM (2012) Metall Mater Trans A 13:709

    Article  Google Scholar 

  28. Liu XH, Zhang HB, Gu SH, Qu ZK, Wu RZ, Zhang ML (2011) Mater Sci Eng, A 528:6157

    Article  CAS  Google Scholar 

  29. Jiménez-Melendo M, Domínguez-Rodríguez A, Holgado-Salado M (2001) Int J Plast 17:341

    Article  Google Scholar 

  30. Edington JW, Melton KN, Cutler CP (1976) Prog Mater Sci 21:63

    Article  Google Scholar 

  31. Liu FC, Ma ZY (2008) Scripta Mater 59:882

    Article  CAS  Google Scholar 

  32. Frost HJ, Ashby MF Deformation-mechanism maps, the plasticity and creep of metals and ceramics. http://Thayer.dartmouth.edu/defmech

  33. Metenine P, Gonzalez-Doncel G, Ruano OA, Wolfenstine J, Sherby OD (1990) Mater Sci Eng, A 125:195

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the A-Star SERC (Singapore) under Grant No. 092 137 0018, and the National Natural Science Foundation of China under Grant No. 50871111.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. C. Liu or M. J. Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F.C., Tan, M.J., Liao, J. et al. Microstructural evolution and superplastic behavior in friction stir processed Mg–Li–Al–Zn alloy. J Mater Sci 48, 8539–8546 (2013). https://doi.org/10.1007/s10853-013-7672-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7672-3

Keywords

Navigation