Skip to main content
Log in

Polyolefin-based nanocomposites: the effect of organosilane on organoclay dispersion

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work dealt with the morphology and properties of polypropylene/organoclay (PP/OMMt) nanocomposites prepared using maleic anhydride-grafted polypropylene (PP-g-MA) or organosilane (OTMS) as a compatibilizing agent. The content of OMMt was 2 wt%, and different concentrations of OTMS were used to obtain OTMS/OMMt mass ratios of 0/1, 1/1, 0.5/1 or 0.25/1. The results of wide-angle X-ray scattering and transmission electron microscopy investigations showed that the OTMS promoted the total exfoliation of OMMt in the PP matrix, while the OMMt yielded a micrometer-scale dispersion when PP-g-MA was used. In general, the OTMS satisfactorily compatibilized the PP/OMMt nanocomposites, increasing the modulus of the PP matrix. When a hybrid compatibilizer of OTMS/PP-g-MA was used, better thermal and mechanical properties were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pavlidou S, Papaspyrides CD (2008) Prog Polym Sci 33:1119

    Article  CAS  Google Scholar 

  2. Paul DR, Robeson LM (2008) Polymer 49:3187

    Article  CAS  Google Scholar 

  3. Santos KS, Bischoff E, Liberman SA, Oviedo MAS, Mauler RS (2011) Ultrason Sonochem 18(5):997

    Article  PubMed  CAS  Google Scholar 

  4. Santos KS, dal Castel C, Liberman SA, Oviedo MAS, Mauler RS (2011) J Appl Polym Sci 119(3):1567

    Article  CAS  Google Scholar 

  5. Chinellato AC, Vidotti SE, Hub G-H, Pessan LA (2010) Compos Sci Technol 70:458

    Article  CAS  Google Scholar 

  6. Kandola BK, Smart G, Horrocks AR, Joseph P, Zhang S, Hull TR, Ebdon J, Hunt B, Cook A (2008) J Appl Polym Sci 108:816

    Article  CAS  Google Scholar 

  7. Zeng QH, Yu AB, Lu GQ, Paul DR (2005) J Nanosci Nanotech 5:1574

    Article  CAS  Google Scholar 

  8. Furlan LG, Ferreira CI, dal Castel C, Santos KS, Mello ACE, Liberman AS, Oviedo MAS, Mauler RS (2011) Mater Sci Eng, A 528(22–23):6715

    Article  CAS  Google Scholar 

  9. Santos KS, Liberman SA, Oviedo MAS, Mauler RS (2008) J Polym Sci, Part B 46(23):2519

    Article  CAS  Google Scholar 

  10. Santos KS, Liberman SA, Oviedo MAS, Mauler RS (2009) Compos A 40:1199

    Article  Google Scholar 

  11. Dong Y, Bhattacharyya D (2008) Compos A 39:1177

    Article  Google Scholar 

  12. Wang K, Wang L, Wu J, Chen L, He C (2005) Langmuir 21:3613

    Article  PubMed  CAS  Google Scholar 

  13. Lertwimolnun W, Vergnes B (2005) Polymer 46:3462

    Article  CAS  Google Scholar 

  14. Ou B, Li D, Liu Y (2009) Compos Sci Technol 69:421

    Article  CAS  Google Scholar 

  15. Garcia-Lopez D, Picazo O, Merino JC, Pastor JM (2003) Europ Polym J 39:945

    Article  CAS  Google Scholar 

  16. Ding C, He H, Guo B, Jia D (2008) Polym Compos 29:698

    Article  CAS  Google Scholar 

  17. Dong Y, Bhattacharyya D (2010) Mater Sci Eng, A 527:1617

    Article  Google Scholar 

  18. Xu W, Liang G, Wang W, Tang S, He P, Pan W-P (2003) J Appl Polym Sci 88:3225

    Article  CAS  Google Scholar 

  19. Wang Y, Chen F-B, Wu K-C (2005) J Appl Polym Sci 97:1667

    Article  CAS  Google Scholar 

  20. Palza H, Vergara R, Yazdani-Pedram M, Quijada R (2009) J Appl Polym Sci 112:1278

    Article  CAS  Google Scholar 

  21. Felix AHO, Cardozo NSM, Nachtigall SMB, Mauler RS (2006) Macromol Mater Eng 291:418

    Article  CAS  Google Scholar 

  22. Li J, Ton-That M-T, Tsai S-J (2006) Polym Eng Sci 46:1060

    Article  CAS  Google Scholar 

  23. Moncada E, Quijada R, Lieberwirth I, Yazdani-Pedram M (2006) Macromol Chem Phys 207:1376

    Article  CAS  Google Scholar 

  24. Sanchez-Valdes S, Mendez-Nonell J, Medellin-Rodriguez FJ, Ramirez-Vargas E, Martinez-Colunga JG, Soto-Valdez H, Munoz-Jimenez L, Neira-Velazquez G (2009) Polym Bull 63:921

    Article  CAS  Google Scholar 

  25. Spencer MW, Hunter DL, Knesek BW, Paul DR (2011) Polymer 52:5369

    Article  CAS  Google Scholar 

  26. Salehi-Mobarakeh H, Yadegari A, Khakzad-Esfahlan F, Mahdavian A (2012) J Appl Polym Sci 124(2):1501

    Article  CAS  Google Scholar 

  27. Chow WS, Neoh SS (2009) J Appl Polym Sci 114:3967

    Article  CAS  Google Scholar 

  28. Herrera NN, Letoffe J-M, Putaux J-L, David L, Bourgeat-Lami E (2004) Langmuir 20(5):1564

    Article  CAS  Google Scholar 

  29. Kim J-T, Lee D-Y, Oh T-S, Lee D-H (2003) J Appl Polym Sci 89:2633

    Article  CAS  Google Scholar 

  30. Piscitelli F, Posocco P, Toth R, Fermeglia M, Pricl S, Mensitieri G, Lavorgna M (2010) J Coll Interf Sci 351:108

    Article  CAS  Google Scholar 

  31. Mansoori Y, Atghia SV, Zamanloo MR, Imanzadeh G, Sirousazar M (2010) Europ Polym J 46:1844

    Article  CAS  Google Scholar 

  32. Subramani S, Lee J-Y, Choi S-W, Kim JH (2007) J Polym Sci, Part B 45:2747

    Article  CAS  Google Scholar 

  33. dal Castel C, Pelegrini T Jr, Barbosa RV, Liberman SA, Mauler RS (2010) Compos A 41:185

    Article  Google Scholar 

  34. Nachtigall SMB, Miotto M, Schneider EE, Mauler RS, Forte MMC (2006) Eur Polym J 42(5):990

    Article  CAS  Google Scholar 

  35. Park S-J, Kim B-J, Seo D-I, Rhee K-Y, Lyu Y-Y (2009) Mater Sci Eng, A 526:74

    Article  Google Scholar 

  36. Shim JH, Joo JH, Jung SH, Yoon J-S (2007) J Polym Sci, Part B 45:607

    Article  CAS  Google Scholar 

  37. Lu H, Hu Y, Li M, Chen Z, Fan W (2006) Compos Sci Technol 66:3035

    Article  CAS  Google Scholar 

  38. Liaw W-C, Huang P-C, Chen C-S, Lo C-L, Chang J-L (2008) J Appl Polym Sci 109:1871

    Article  CAS  Google Scholar 

  39. Amash A, Zugenmaier P (1997) J Appl Polym Sci 63:1143

    Article  CAS  Google Scholar 

  40. Scobbo JJ (2000) In: Paul DR, Bucknall CB (eds) Polymer blends, vol 2. Wiley, New York, p 335

    Google Scholar 

  41. Martins CG, Larocca NM, Paul DR, Pessan LA (2009) Polymer 50:1743

    Article  CAS  Google Scholar 

  42. Kim DH (2007) Polymer 48:5308

    Article  CAS  Google Scholar 

  43. Chavarria F, Paul DR (2004) Polymer 45:8501

    Article  CAS  Google Scholar 

  44. Yu Z–Z, Dasari A, Mai Y-W (2007) In: Advani SG (ed) Processing and properties of nanocomposites. World Scientific Publishing Co. Pte. Ltd, Singapore, p 310

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to CAPES, CNPq, Finep, and FAPERGS/PRONEX for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Mauler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, K.S., Liberman, S.A., Oviedo, M.A.S. et al. Polyolefin-based nanocomposites: the effect of organosilane on organoclay dispersion. J Mater Sci 49, 70–78 (2014). https://doi.org/10.1007/s10853-013-7662-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7662-5

Keywords

Navigation