Skip to main content
Log in

Ionic liquid-assisted hydrothermal synthesis of TiO2 nanoparticles and its application in photocatalysis

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Anatase TiO2 nanoparticles have been successfully synthesized at 130 °C for 2 days via ionic liquid-assisted hydrothermal method. The obtained products are characterized using various techniques. The X-ray diffraction data reveal that the nanoparticles are anatase TiO2. FTIR spectrum shows that the presence of ionic liquid and indicates Ti–O–Ti peak at around 398 cm−1, and the bands at 1500 and 1600 cm−1 indicates C–H in-plane vibrations and stretching of imidazolium ring. Raman spectroscopy show bands at 142, 393, 513, and 636 cm−1 reveal crystalline anatase phase. UV–Vis spectroscopy shows the λ max at 355 nm corresponding to a band gap of 3.49 eV. TEM images reveal that the average diameters of anatase TiO2 nanoparticles are in the range 50–100 nm. Anatase TiO2 exhibited excellent photocatalysis for the degradation of organic dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Caruso F (Ed) (2004) Colloids and Colloid Assemblies, Wiley-VCH, Weinheim, doi:10.1002/3527602100.ch1

  2. Matsunaga T, Okamura T, Tanaka T (2004) J Mater Chem 14:2099

    Article  CAS  Google Scholar 

  3. Matsunaga T, Suzuki T, Tanaka M, Arakaki A (2007) Trends Biotechnol 25:182

    Article  CAS  Google Scholar 

  4. Mornet S, Vasseur S, Grasset F, Duguet E (2004) J Mater Chem 14:2161

    Article  CAS  Google Scholar 

  5. Millstone JE, Hurst SJ, Metraux GS, Cutler JI, Mirkin CA (2009) Small 5:646

    Article  CAS  Google Scholar 

  6. Na HB, Song IC, Hyeon T (2009) Adv Mater 21:2133

    Article  CAS  Google Scholar 

  7. Niederberger M (2007) Acc Chem Res 40:793

    Article  CAS  Google Scholar 

  8. Pinna N, Niederberger M (2008) Angew Chem Int Ed 47:5292

    Article  CAS  Google Scholar 

  9. Chen X, Mao SS (2007) Chem Rev 107:2891

    Article  CAS  Google Scholar 

  10. Bacsa RR, Kiwi J (1998) J Appl Catal B 16:19

    Article  CAS  Google Scholar 

  11. Mills A, Lee SK, Lepre A (2003) J Photochem Photobiol A 155:199

    Article  CAS  Google Scholar 

  12. Watson S, Beydoun D, Scott J, Amal RR (2004) J Nanopart Res 6:193

    Article  CAS  Google Scholar 

  13. Yan MC, Chen F, Zhang J, Anpo M (2005) J Phys Chem B 109:8673

    Article  CAS  Google Scholar 

  14. Gumy D, Morais C, Bowen P, Pulgarin C, Giraldo S, Hajdu R, Kiwi J (2006) J Appl Catal B 63:76

    Article  CAS  Google Scholar 

  15. Zhang H, Banfield JF (1998) J Mater Chem 8:2073

    Article  CAS  Google Scholar 

  16. Barnard ANS, Curtiss LA (2005) Nano Lett 5:1261

    Article  CAS  Google Scholar 

  17. Garcıa MF, Wang X, Belver C, Hanson JC, Rodriguez JA (2007) J Phys Chem C 111:674

    Article  Google Scholar 

  18. Shafer MW, Rustum Roy (1959) J Am Ceram Soc 42:563

    Article  CAS  Google Scholar 

  19. Li WJ, Shi EW, Zheng YQ, Yin ZW (2001) J Mater Sci Lett 20:1381

    Article  CAS  Google Scholar 

  20. Chen SJ, LI LH, Chen XT, Xue Z, Hong JM, You XZ (2003) J Crystal Growth 252:184

    Article  CAS  Google Scholar 

  21. Soucase MB, Mollar M, Mechkour A, Hartiti B, Perales M, Cembrero J (2004) Microelectron J 35:79

    Article  Google Scholar 

  22. Lin H, Oliveria PW, Grobelsek I, Haettich A, Veith M, Anorg Z (2010) Allg Chem 636:1947

    Article  CAS  Google Scholar 

  23. Nagabhushana GP, Ashoka S, Chandrappa GT (2013) Mater Lett 91:272

    Article  CAS  Google Scholar 

  24. Dupont J, deSouza RF, Suarez PAZ (2002) Chem Rev 102:3667

    Article  CAS  Google Scholar 

  25. Zhang H, Li X, Chen G (2009) J Mater Chem 19:8223

    Article  CAS  Google Scholar 

  26. Zhang B, Ning W, Zhang J, Qiao X, Zhang J, He J, Liu C (2010) Mater Chem 20:5401

    Article  CAS  Google Scholar 

  27. Hu H, Yang H, Huang P, Cui D, Peng Y, Zhang J, Lu F, Lian J, Shi D (2010) Chem Commun 46:3866

    Article  CAS  Google Scholar 

  28. Zheng W, Liu X, Yan Z, Zhu L (2009) ACS Nano 3:115

    Article  CAS  Google Scholar 

  29. Qi L, Yu J, Jaroniec M (2013) Adsorption 19:557

    Article  CAS  Google Scholar 

  30. Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Angew Chem Int Ed 43:4988

    Article  CAS  Google Scholar 

  31. Dupont J, Scholten JD (2010) Chem Soc Rev 39:1780

    Article  CAS  Google Scholar 

  32. Zhen M, Jihong Y, Sheng D (2010) Adv Mater 22:261

    Article  Google Scholar 

  33. Cassol CC, Ebeling G, Ferrera B, Dupont J (2006) Adv Synth Catal 348:243

    Article  CAS  Google Scholar 

  34. Kiefer J, Fries J, Leipertz A (2007) Appl Spectrosc 61:1306

    Article  CAS  Google Scholar 

  35. Chen X, Mao SS (2007) Chem Rev 107:2891

    Article  CAS  Google Scholar 

  36. Porto SPS, Fleury PA, Damen TC (1967) Phys Rev 154:522

    Article  CAS  Google Scholar 

  37. Tompsett GA, Bowmaker GA, Cooney R, Metson J, Rodgers KA, Seakins J (1995) J Raman Spectrosc 26:57

    Article  CAS  Google Scholar 

  38. Paul G, Choudhury A, Rao CNR (2002) J Chem Soc Dalton Trans 20:3781

    Google Scholar 

  39. Carp O, Huisman CL, Reller A (2004) Solid State Chem 32:33

    Article  CAS  Google Scholar 

  40. Gaya UI, Abdullah AH (2008) J Photochem Photobiol C 9:1

    Article  CAS  Google Scholar 

  41. Konstantinou IK, Albanis TA (2004) Appl Catal B 49:1

    Article  CAS  Google Scholar 

  42. Bahnemann DW, Cunningham J, Fox MA, Pelizzetti E, Pichat P, Serpone N, Zepp RG, Heltz GR, Crosby DG (Eds.) (1994) Aquatic surface photochemistry, Lewis Publishers, Boca Raton, p. 261

  43. Tunesi S, Anderson M (1991) J Phys Chem 95:3399

    Article  CAS  Google Scholar 

  44. Akpan UG, Hameed BH (2009) J Hazard Mater 170:520

    Article  CAS  Google Scholar 

  45. Yao J, Wang H (2010) Int J Photoenergy. doi:10.1155/2010/643182

    Google Scholar 

  46. Xiang Q, Yu J, Wong PK (2011) J Colloid Interface Sci 357:163

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, K. Manjunath acknowledges Jain University for providing facilities and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nagaraju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagaraju, G., Manjunath, K., Ravishankar, T.N. et al. Ionic liquid-assisted hydrothermal synthesis of TiO2 nanoparticles and its application in photocatalysis. J Mater Sci 48, 8420–8426 (2013). https://doi.org/10.1007/s10853-013-7654-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7654-5

Keywords

Navigation