Skip to main content

Advertisement

Log in

Damage evolution in glass/epoxy composites engineered using core–shell microparticles under impact loading

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The overall objective of the investigation presented in this paper was to study the effect of dispersion of core–shell polymer (CSP) particles within the ply interfaces on damage evolution of glass/epoxy laminates under impact loading. These laminates were fabricated with the CSP particle dispersion controlled to 14 % of the total weight of the used prepreg. A series of impact experiments were done with instrumental drop tower device at all probable impact energies within a practical low velocity impact range. The damage phenomena occurring in the internal microstructure of the laminates were analysed with the help of scanning electron microscope and correlated to the structural response of the laminate. The predominant damage modes were dependent on the magnitude of the applied impact energy. The CSP particle incorporation does not change the sequence of the fracture events but it delays and mitigates the damage creation. The deformation of the CSP particles and the tearing of their outer shells absorb most of the impact energy thereby preventing initiation of matrix cracks at lower impact energies and delaying fibre damage at higher energies. The crushed particles along with their nano-size rubber cores impede crack propagation requiring the cracks to follow torturous paths consequently dissipating additional amount of energy. These particles also promote elastic energy absorption of the laminates minimizing their tendency to fracture easily under impact. The ultimate load bearing capability of the modified laminate showed 60 % improvement and the deflection characteristics indicated lower proneness to impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Brostow W, Haley E, Lobland H (2010) J Mater Sci 45:242. doi:10.1007/s10853-009-3926-5

    Article  CAS  Google Scholar 

  2. Cartié DDR, Irving PE (2002) Compos Part A Appl Sci Manuf 33:483

    Article  Google Scholar 

  3. Wang SX, Wu LZ, Ma L (2010) Mater Des 31:118

    Article  Google Scholar 

  4. Kim KY, Ye L (2012) J Mater Sci 47:7280. doi:10.1007/s10853-012-6682-x

    Article  CAS  Google Scholar 

  5. Zumpano G, Fox M, Stronge WJ, Sutcliffe MPF (2008) J Mater Sci 43:6668. doi:10.1007/s10853-008-2880-y

    Article  CAS  Google Scholar 

  6. Pegoretti A, Fabbri E, Migliaresi C, Pilati F (2004) Polym Int 53:1290

    Article  CAS  Google Scholar 

  7. Richardson MOW, Wisheart MJ (1996) Compos Part A Appl Sci Manuf 27:1123

    Article  Google Scholar 

  8. Sela N, Ishai O (1989) Compos 20:423

    Article  CAS  Google Scholar 

  9. Garg AC, Mai YW (1988) Compos Sci Tech 31:179

    Article  CAS  Google Scholar 

  10. Takemura K, Fujii T (2000) JSME Int J, Ser A 43:186

    Article  Google Scholar 

  11. Shi AX, Gong TW, Yiu WM (2013) J Mater Sci 48:3546. doi:10.1007/s10853-013-7149-4

    Article  Google Scholar 

  12. Kosar I, Ullah KS, Kim JK, Munir A (2008) Adv Mater Res 47:1205

    Article  Google Scholar 

  13. Soliman EM, Sheyka MP, Taha MR (2012) Int J Impact Eng 47:39

    Article  Google Scholar 

  14. Gupta A, Choudhary V (2013) J Mater Sci 48:3347. doi:10.1007/s10853-012-7025-7

    Article  CAS  Google Scholar 

  15. Jang K, Cho WJ, Ha CS (1999) Compos Sci Tech 59:995

    Article  CAS  Google Scholar 

  16. Caneva C, Olivieri S, Santulli C, Bonifazi G (1993) Compos Struct 25:121

    Article  Google Scholar 

  17. Wu E, Wang J (1995) J Compos Mater 29:2254

    Article  Google Scholar 

  18. Tan KT, Watanabe N, Iwahori Y (2012) Int J Damage Mech 2012(21):51

    Article  Google Scholar 

  19. Zhang X, Hounslow L, Grassi M (2006) Compos Sci Tech 66:2785

    Article  CAS  Google Scholar 

  20. Farley GL, Smith BT, Maiden J (1992) J Reinf Plast Compos 11:787

    Article  CAS  Google Scholar 

  21. Mouritz AP, Leong KH, Herszberg I (1997) Compos Part A Appl Sci Manuf 28:979

    Article  Google Scholar 

  22. Steeves CA, Fleck NA (2006) Int J Solids Struct 43:3197

    Article  Google Scholar 

  23. Hirai Y, Hamada H, Kim JK (1998) Compos Sci Tech 58:91

    Article  CAS  Google Scholar 

  24. Bledzki AK, Gassan J, Kessler A (1999) J Test Eval 27:36

    Article  Google Scholar 

  25. El-Habak AM (1993) Compos 24:341

    Article  CAS  Google Scholar 

  26. Radchenko A, Radchenko P (2011) J Mater Sci 46:2720. doi:10.1007/s10853-010-5142-8

    Article  CAS  Google Scholar 

  27. Malhotra A, Guild FJ, Pavier MJ (2008) J Mater Sci 43:6661. doi:10.1007/s10853-008-2863-z

    Article  CAS  Google Scholar 

  28. Deka LJ, Bartus SD, Vaidya UK (2008) J Mater Sci 43:4399. doi:10.1007/s10853-008-2595-0

    Article  CAS  Google Scholar 

  29. Gweon SY, Bascom WD (1992) J Mater Sci 27:2035. doi:10.1007/BF01117915

    Article  CAS  Google Scholar 

  30. Shyr TW, Pan YH (2003) Compos Struct 62:193

    Article  Google Scholar 

  31. Lagace PA, Wolf E (1995) AIAA J 33:1106

    Article  CAS  Google Scholar 

  32. Belingardi G, Vadori R (2002) Int J Impact Eng 27:213

    Article  Google Scholar 

  33. Davies GAO, Zhang X (1995) Int J Impact Eng 16:149

    Article  Google Scholar 

  34. Feraboli P, Kedward KT (2004) AIAA J 42:2143

    Article  Google Scholar 

  35. Feraboli P (2006) J Aircr 43:1710

    Article  Google Scholar 

  36. Abrate S (2001) Compos Struct 51:129

    Article  Google Scholar 

  37. Kostopoulos V, Baltopoulos A, Karapappas P, Vavouliotis A, Paipetis A (2010) Compos Sci Tech 70:553

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge and thank The Dow Chemical Company, Singapore for their kind support in providing the CSP particles for this project. The first author gratefully acknowledges the NTU research scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mubarak Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, M., Joshi, S.C. Damage evolution in glass/epoxy composites engineered using core–shell microparticles under impact loading. J Mater Sci 48, 8354–8367 (2013). https://doi.org/10.1007/s10853-013-7635-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7635-8

Keywords

Navigation